
 Name: _____________________________ Page 1

CSSE 120 – Fundamentals of Software Development I
Exam 2: Fall term 2003-2004

Name:______________________________ Box #: ___________ Time allowed: 120 minutes

Instructor (check one): □Anderson □Azhar □Mutchler

Instructions: This test has 3 parts:

 Part 1: closed-book.

 Part 2: open-book, paper-and-pencil problems.

 Part 3: open-book, on-the-computer problems.

For Part 1 (closed-book):

• You may NOT use any external resources (no book, notes, computer, etc.)

• Turn in Part 1 before you begin using any external resources.
o However, you may read Parts 2 and 3 (and begin thinking about those parts) before you

turn in Part 1.

For Part 2 (open-book, paper-and-pencil) and Part 3 (open-book, on-the-computer):

• You may access your computer and any materials that you brought with you (books, notes, etc),
but only after you turn in Part 1.

• You may use the network ONLY to access the CSSE
120 web site (and items to which it links).

Problem Points
available

Your
score

1. 5

2. 5

3. 10

4. 15

5a. 10

5b. 15

5c. 15

7a. 15

7b. 15

Total 70

o You must NOT use ANY form of
communication. No email, no chat, not
anything!

o Disable all chat tools (AIM, ICQ, etc) before
the exam starts.

For paper-and-pencil problems (Parts 1 and 2):

• Write all answers on these pages legibly.

o Use additional sheets as necessary.

o If you use additional sheets, indicate on the
exam where your answer continues.

Regarding code that you write:

• All the code you turn in should be correct, efficient,
and use good style.

• However, due to time constraints, no documentation is
required on the paper-and-pencil parts.

• Appropriate documentation is required on the on-the-
computer part.

 Name: _____________________________ Page 2

Part 1 (closed-book):
• You may NOT use any external resources in Part 1 (no book, notes, computer, etc.)
• Turn in Part 1 before you begin using any external resources.

o However, you may read Parts 2 and 3 (and begin thinking about those parts) before you
turn in Part 1.

1. (5 points: 1 point for each item). Consider some of the types of relationships. For example, Paddle
is-a Wall, Table has-a Wall… Classify the relationships below according to the type of
relationship, where you should use Rose-Hulman Institute of Technology as the model School.
This means that if ClassRoom is generally adjacent to another ClassRoom at Rose-Hulman, then
we can consider that to be generally true.

Class 1 is-a

or

has-a

Class 2

Student Person

School Student

School ClassRoom

ClassRoom Wall

Chair Furniture

2. (5 points: 1 point for each item). We talked about relationships being classified based on

multiplicity (1-1, 1-many, many-1). For example, Student-to-Class is a many-to-many, Table-to-
Wall is a 1-to-many, Country-CurrentPresident is 1-1. Classify the relationships in the following
table according to their type, where you should use Rose-Hulman Institute of Technology as the
model School. This means that if Rose-Hulman has one CurrentPresident, then we can consider
that to be generally true.

Class 1 Indicate:
1-1 or 1-many or many-1 or many-many Class 2

Teacher Class

Student SocialSecurityNumber

Student Teacher

School Chapel

Department (e.g., CSSE) School

 Name: _____________________________ Page 3

3. (10 points, 1 point each) What do the following statements do?

a. public class Paddle extends Wall implements Runnable, Bounceable

b. new Thread(this).start();

c. super();

d. this(myName, DEFAULT_WEIGHT, DEFAULT_WEIGHT);

e. super.paintComponent(g);

f. this.move();

g. this.myBall.move();

h. Square myBoard[][] = new Square[X][Y];

i. The following code segment
Square(int i, int j) {

this.xPosition = i;

this.yPosition = j;

}

j. The following code segment
for (i = 0; i < X; i++) {

 for (j = 0; j < Y; j++) {

 myBoard[i][j] = new Square(i,j);

 }

}

 Name: _____________________________ Page 4

Part 2 (open-book, paper-and-pencil):

• Turn in Part 1 before you begin using any external resources (book, notes, computer, etc)
on Part 2.

• Note the rules for Part 2, as stated on the cover page of this exam.

4. (15 points). Write a method called int sum5Even(int n) such that the method takes as input an
positive integer n, and returns the sum of all positive numbers strictly less than n that are divisible
by 2 or 5. For example:

THESE ARE ONLY EXAMPLES OF TEST DATA.

YOUR PROGRAM MUST WORK FOR ANY POSITIVE INTEGER n.

The call returns Because
sum5Even(3) 2 2 is the only number added
sum5Even(5) 6 that is the sum of 2 and 4
sum5Even(10) 25 that is the sum of 2, 4, 5, 6, and 8
sum5Even(11) 35 that is the sum of 2, 4, 5, 6, 8, and 10 (Note 10 is must not be

double counted)
(Hints: A number is divisible by 2, if it leaves a remainder of 0 when divided by 2. Also, you may find
the “%” operator useful here.)

 Name: _____________________________ Page 5

5. (35 points). Read the entire question before working on individual parts. Consider the game of
Chess. Today, you will design and present a Class Diagram for Chess.

Be mindful of the following requirements:
i. This problem has several parts and each part will lead you to the next. So, do them in the

prescribed order.
ii. This question is about Player-vs-Player game and you must not address the user interface

component(s). (We just want you to focus on modeling the game of Chess itself).

iii. You can find the description of Yahoo! Chess at the following URLs:

http://games.yahoo.com/games/rules/chess/history.html?page=ch

http://games.yahoo.com/games/rules/chess/basics.html?page=ch

http://games.yahoo.com/games/rules/chess/pieces.html?page=ch (and associated links for
Queen, Knight, Bishop, Rook, and Pawn).

iv. You must not address any implementation details (such as the actual code that is needed) or
other rules of chess (such as check or castling).

a. (10 points). Your first step is to identify the Classes in the above problem. Be mindful of the
following requirements:
i. You must have at least 9 classes.
ii. You do need to have relationships, fields or methods in your list yet.
iii. Be prepared to change this list after you have done the other parts.

On an extra sheet of paper, go ahead and list the classes.

b. On an extra sheet of paper, sketch a class diagram showing the relationships in Part a.

. Be mindful of the following requirements:
i. See http://www.rose-hulman.edu/class/csse/csse120/resources/classNotes/session20/PingPongDesign.doc

Page 1 for example.
ii. You must have at two or more “is-a” relationships and one or more “has-a” relationships.

If you don’t, go back to Part a, and modify your list of classes.
iii. You should not have fields or methods in your diagram yet.
iv. Where necessary show the multiplicity of the relationships.
v. You need not worry about interfaces for the purpose of this class diagram

c. On an extra sheet of paper, sketch the detailed object diagrams for three of the classes in Part b
on an extra sheet of paper.

i. (See http://www.rose-hulman.edu/class/csse/csse120/resources/classNotes/session20/PingPongDesign.doc
Page 3 for example).

ii. You must pick the following classes:

(1) The class King;

(2) One Class that acts as superclass of another class (just the superclass not the subclass).

(3) One class that “has-a” another class (again just the class that contains, not the class that
is contained).

http://games.yahoo.com/games/rules/chess/history.html?page=ch
http://games.yahoo.com/games/rules/chess/basics.html?page=ch
http://games.yahoo.com/games/rules/chess/pieces.html?page=ch
http://www.rose-hulman.edu/class/csse/csse120/resources/classNotes/session20/PingPongDesign.doc
http://www.rose-hulman.edu/class/csse/csse120/resources/classNotes/session20/PingPongDesign.doc

 Name: _____________________________ Page 6

Part 3 (open-book, on-your-computer):

• Turn in Part 1 before you begin using any external resources (book, notes, computer, etc)
on Part 3. Note the rules for Part 3, as stated on the cover page.

6. (35 points). Do this problem on your computer. To do so:

Step 1: Go to the CSSE 120 home page and download and unzip the CatAndMouse project.

Step 2: Examine the CatAndMouse class diagram, on a separate handout, as follows:

o Look closely at page 1 (the problem statement).

o Look closely at page 2 (the class diagram that shows only the classes and their
relationships). We implemented all the classes on the left-hand-side of that page. You
will implement ONLY the following classes (all on the right-hand-side of the class
diagram): Animal Cat Mouse CatsAndMice

o Briefly skim page 3 – we implemented all the classes on page 3. You should NOT
change any of those classes. You can succeed at this project without looking at the
code for any of those classes.

o Look closely at page 4, which shows the class diagram for the CatsAndMice class. We
implemented all of this class except its constructor.

o Look closely at page 5, which shows the class diagram for the Cat, Mouse and Animal
classes. You will implement all of these classes.

Step 3: Implement the CatsAndMice, Cat, Mouse and Animal classes per the class diagram
and the problem statement, per the following iterative enhancement plan:

o Step 3a: Implement empty Animal, Cat and Mouse classes (no fields, no methods).

 The project will have compile errors in OUR parts of the code until you have
implemented these skeleton Animal, Cat and Mouse classes.

o Step 3b: Implement ALL the methods required by the class diagrams for Animal, Cat
and Mouse, but with empty bodies (or trivial bodies for those methods that require a
returned value).

o Step 3c: Get a single Mouse to work properly. Some hints about what you might work
on first:

 Implement the Animal’s getRoom method, since that method is how our classes
communicate with your classes.

 Implement the CatsAndMice constructor.

 Implement the relevant Animal methods, then the relevant Mouse methods.

 Compile and test frequently!

o Step 3d: Get the other two mice to work properly.

o Step 3e: Get the cats to work properly.

• Step 4: When done, copy your entire CatAndMouse project to your turnin folder under Exam2

• Important: If you don’t understand the problem statement, ask your instructor or an assistant.

• Important: If you have any compile-time errors that you cannot resolve, you may twice ask
for help from your instructor or an assistant. After that, you are on your own.

CatAndMouse handout, page 1

Problem statement:

Two cats and three mice are in a house with 10 rooms.

• The cats and mice move from room to room randomly, as long as they are alive.
• When a cat enters a room:

o If a mouse is in that room, the cat eats the mouse.
o Then the cat sleeps in that room for a while.

• When a mouse enters a room:
o The mouse sometimes leaves immediately,
o but otherwise it sleeps in that room for a while.

Notes:
1. The rooms are numbered from 1 to 10.
2. If there is more than one mouse in the room, the cat eats all of them.
3. Each animal has a “timeToSleep” that is the number of milliseconds that the animal sleeps in a room before

moving to another randomly chosen room.
4. Each mouse has a “roomToLeaveImmediately” that is a number between 1 and 10. When a mouse enters a

room, it leaves the room immediately if the room it enters is that mouse’s roomToLeaveImmediately. For
example, if a mouse’s roomToLeaveImmediately is 4, then that mouse immediately leaves room 4 whenever it
enters it, but sleeps for a while whenever it enters any other room.

5. When an animal moves to a new (randomly chosen) room, the new room should really be new (i.e., not the
same room in which the animal currently is in).

CatAndMouse handout, page 2

Problem statement (repeated for your convenience):
Two cats and three mice are in a house with 10 rooms. The cats and mice move from room to room randomly, as long
as they are alive. When a cat enters a room, if a mouse is in that room, the cat eats the mouse. Then the cat sleeps
in that room for a while. When a mouse enters a room, the mouse sometimes leaves immediately, but otherwise it
sleeps in that room for a while.

Classes and relationships

CatsAndMice

JPanel

Cat

Animal

 2

2

3

CatAndMouse

JFrame

<<interface>>
ActionListener

1

CatAndMouseInputPanel

CatAndMousePanel

1

<<interface>>
Runnable

3
Mouse

 CatAndMouse handout, page 3

Classes:
We have implemented all the classes on this page

N

me

C

CatAndMousePanel

JFra
CatAndMouse

UMBER_OF_ROOMS:
 static final int

atAndMouse()
Constructs 2
CatAndMousePanels
and adds each to the
CatAndMouse’s pane

twoCatsAndThreeMice: CatsAndMice
inputPanel: CatAndMouseInputPanel
startButton: JButton

CatAndMousePanel()
Constructs, stores and displays the
CatAndMouseInputPanel
Constructs, stores and displays a Start
button which, when pressed, starts the
simulation

paintComponent(Graphics)
Draws the rooms, cats and mice

actionPerformed(ActionEvent)
Gets the characteristics of the cats and mice
from the CatAndMouseInputPanel
Constructs and stores a CatsAndMice object
Starts a new Thread

run()

Repeatedly:
 repaints the panel and sleeps briefly

CatAndMouseInputPanel

CatAndMouseInputPanel()
Constructs and displays
labeled textfields
for the user to input
the characteristics
of the cats and mice

int[] getInputs()

Return the characteristics
of the cats and mice

JPanel

to CatsAndMice class (on next page)

2

 1

CatAndMouse handout, page 4

Classes (continued)

CatsAndMice

cat1: Cat
cat2: Cat
mouse1: Mouse
mouse2: Mouse
mouse3: Mouse

CatsAndMice(
 int, int,
 int, int, int,
 int, int, int)

Constructs and stores 2 Cats and 3 Mice, where:
• The first 2 arguments specify

 the timeInRoom values for the 2 Cats
• The next 3 arguments specify

the timeInRoom values for the 3 Mice
• The last 3 arguments specify

the roomToLeaveImmediately values
for the 3 Mice

Animal getAnimal(int)

If k is 1, returns the 1st Cat
If k is 2, returns the 2nd Cat
If k is 3, returns the 3rd Cat
If k is 4, returns the 1st Mouse
If k is 5, returns the 2nd Mouse

from CatAndMousePanel class (on previous page) 1You implement
only the
constructor
of this class

Cat
(see next page)

3

2

Mouse
(see next page)

CatAndMouse handout, page 5

Classes (continued) You implement all of these classes

Animal

isAlive: boolean
True if the animal is alive, else false

room: int
The room that the animal is currently in

timeInRoom: int
Number of milliseconds that the animal sleeps in a room

Animal()
Set the timeInRoom for this Animal to1000 milliseconds.
Start a new Thread

Animal(int)
Set the timeInRoom for this Animal to the given argument
Start a new Thread

enterRoom(int)

Simulate the Animal entering the given room by:
 Sleep in the room for this Animal’s timeInRoom

int getRoom()

Return the room that the animal is currently in

boolean isAlive()

Return true if the Animal is alive, else return false

run()

Repeat:
 1. Choose a random room (i.e., a random number
 between 1 and CatAndMouse.NUMBER_OF_ROOMS)
 2. Enter that room
until the Animal is no longer alive

Cat

mouse1: Mouse
mouse2: Mouse
mouse3: Mouse

Cat(Mouse, Mouse, Mouse, int)
Set the Cat’s Mice to the 1st three arguments
Set the Cat’s timeInRoom to the 4th argument

enterRoom(int)
Simulate the Cat entering the given room by:
 1. For each of the Cat’s 3 Mice:
 If the Mouse is in the same room that the cat entered,
 the Cat eats the Mouse (i.e., the Mouse is eaten)
 2. Sleep in the room for this Cat’s timeInRoom

Mouse

roomToLeaveImmediately: int

Mouse(int, int)
Set the Mouse’s timeInRoom to the 1st argument
Set the Mouse’s roomToLeaveImmediately to the 2nd argument

beEaten()
Make the Mouse be dead (i.e., not alive)

enterRoom(int)
Simulate the Mouse entering the given room by:
• If the given room is the Mouse’s roomToLeaveImmediately,

the Mouse doesn’t sleep (thereby leaving the room immediately)
• Otherwise, the Mouse sleeps in the room for this Mouse’s timeInRoom

CatAndMouse handout, page 6

