

Table of Contents
Part 1 Introduction to Interactive Program Design...1

Chapter 1 Introduction to Program Design...3
 1.1 Computers and Programs..4
 1.2 Thinking Like a Programmer..6
 1.3 Programming Primitives, Briefly..8
 1.4 Ongoing Computational Activity..9
 1.5 Coordinating a Computational Community..11

 1.5.1 What Is the Desired Behavior of the Program?.....................................12
 1.5.2 Who Are the Entities Who Interact to Produce the Program's

 Desired Behavior?...13
 1.5.3 What Goes Inside Each Entity (How Does It Work)?...........................13
 1.5.4 How Do These Entities Interact?...14

 1.6 The Development Cycle...16
 1.7 The Interactive Control Loop..18
 Chapter Summary...19
 Exercises...20

Chapter 2 The Programming Process...23

Interlude A A Community of Interacting Entities...69
 A.1 Introduction: Word Games...70
 A.2 Designing a Community..71

 A.2.1 A Uniform Community of Transformers..71
 A.2.2 The User and the System..73
 A.2.3 What Goes Inside..75

 A.3 Building a Transformer..76
 A.3.1 Transformer Examples..77
 A.3.2 Strings...78

 A.3.2.1 String Concatenation..79
 A.3.2.2 String Methods...79

 A.3.3 Rules and Methods..82
 A.3.4 Classes and Instances..83
 A.3.5 Fields and Customized Parts...85
 A.3.6 Generality of the approach..87

 Chapter Summary...89
 Exercises...90

Part 2 Entities and Interactions..91

Chapter 3 Things, Types, and Names...93
 3.1 Things in Programs...94
 3.2 Most Java Things are Objects...95

i

Table of Contents
Chapter 3 Things, Types, and Names

 3.2.1 Doing Things with Objects..96
 3.3 Naming Things...99
 3.4 Types...103

 3.4.1 What a Type Is...103
 3.4.1.1 Two Kinds of Types: Primitive Types and Object Types...........104
 3.4.1.2 Object Types...104
 3.4.1.3 What a Type Is: Summary..105

 3.4.2 Types of Objects..106
 3.4.3 Types of Names...106

 3.4.3.1 Declarations and the Type−of−Thing Name−of−Thing Rule....106
 3.4.3.2 Definition = Declaration + Assignment......................................107

 3.5 Names for Objects: Label Names...108
 3.6 Primitive Types, Literals and Dial Names..110

 3.6.1 Literals...111
 3.6.2 Primitive Types..112
 3.6.3 Names for Primitive−Type Things: Dial Names.................................115

 3.7 A Tale of Things and Names..120
 Chapter Summary...124
 Exercises...125

Chapter 4 Specifying Behavior: Interfaces...131
 4.1 Interfaces are Contracts...132

 4.1.1 Generalized Interfaces and Java Interfaces..133
 4.1.2 A Java Interface Example..134

 4.2 Method Signatures..135
 4.2.1 Name..136
 4.2.2 Parameters and Parameter Types...136
 4.2.3 Return Type...137
 4.2.4 Putting It All Together: Abstract Method Declaration Syntax............137
 4.2.5 What a Signature Doesn't Say..138

 4.3 Interface Declaration...140
 4.3.1 Syntax..140
 4.3.2 Method Footprints and Unique Names..141
 4.3.3 Interfaces are Types: Behavior Promises...143
 4.3.4 Interfaces are Not Implementations...144

 Chapter Summary...146
 Exercises...147

Chapter 5 Expressions: Doing Things with Things...149
 5.1 Simple Expressions...150

 5.1.1 Literals...150
 5.1.2 Names..151

ii

Table of Contents
Chapter 5 Expressions: Doing Things with Things

 5.2 Method Invocation..152
 5.3 Combining Expressions..153
 5.4 Assignments and Side−Effecting Expressions...155
 5.5 Other Expressions That Use Objects..156

 5.5.1 Fields..156
 5.5.2 Instance Creation...157
 5.5.3 Type Membership..158

 5.6 Complex Expressions on Primitive Types: Operations................................158
 5.6.1 Arithmetic Operation Expressions...160
 5.6.2 Explicit Cast Expressions..162
 5.6.3 Comparator Expressions..164
 5.6.4 Logical Operator Expressions..165

 5.7 Parenthetical Expressions and Precedence...166
 Chapter Summary...171
 Exercises...172

Chapter 6 Statements and Rules...175
 6.1 Statements and Instruction−Followers..176
 6.2 Simple Statements...177
 6.3 Declarations and Definitions...178
 6.4 Sequence Statements...180
 6.5 Flow of Control...183

 6.5.1 Simple Conditionals...183
 6.5.2 Simple Loops...187

 6.6 Statements and Rules..189
 6.6.1 Method Invocation Execution Sequence...190
 6.6.2 Return...191

 Chapter Summary...194
 Exercises...195

Interlude B Expressions and Statements..197
 B.1 The Problem...198
 B.2 Representation..200
 B.3 Interacting with the Rules..202
 B.4 Paying Attention to the World...204
 B.5 Fancy Dot Tricks..207
 B.6 Remembering State..208

 B.6.1 Fields...209
 B.6.2 Fields versus Local Variables...211

 Chapter Summary...213
 Exercises...214

iii

Table of Contents
Chapter 7 Building New Things: Classes and Objects..215

 7.1 Classes are Object Factories...216
 7.1.1 Classes and Instances...216
 7.1.2 Recipes Don't Taste Good..217
 7.1.3 Classes are Types...218

 7.2 Class Declaration..219
 7.2.1 Classes and Interfaces..220

 7.3 Data Members, or Fields...221
 7.3.1 Fields are Not Variables...223

 7.3.1.1 Hotel Rooms and Storage Rental..224
 7.3.1.2 Whose Data Member Is It?...224
 7.3.1.3 Scoping of Fields..225

 7.3.2 Static Members..227
 7.4 Methods..228

 7.4.1 Method Declaration...229
 7.4.2 Method Body and Behavior...230
 7.4.3 A Method ALWAYS Belongs to an Object..231
 7.4.4 Method Overloading..232

 7.5 Constructors..235
 7.5.1 Constructors are Not Methods...235
 7.5.2 Syntax..236
 7.5.3 Execution Sequence...238
 7.5.4 Multiple Constructors and the Implicit No−Argument Constructor....239
 7.5.5 Constructor Functions..240

 Chapter Summary...243
 Exercises...244

Part 3 Refining Designs...247

Chapter 8 Designing with Objects...249
 8.1 Object Oriented Design...250

 8.1.1 Objects are Nouns..250
 8.1.2 Methods are Verbs...251
 8.1.3 Interfaces are Adjectives..251
 8.1.4 Classes are Object Factories..252
 8.1.5 Some Counter Code...254
 8.1.6 Public and Private..255

 8.2 Kinds of Objects...257
 8.2.1 Data Repositories...257
 8.2.2 Resource Libraries...262
 8.2.3 Traditional Objects...264

 8.3 Types and Objects...266
 8.3.1 Declared Type and Actual Type..266

iv

Table of Contents
Chapter 8 Designing with Objects

 8.3.2 Use Interface Types...267
 8.3.3 Use Contained Objects to Implement Behavior...................................268
 8.3.4 The Power of Interfaces...269

 Chapter Summary...271
 Exercises...272

Chapter 9 Animate Objects..273
 9.1 Animate Objects..274
 9.2 Animacies are Execution Sequences..275
 9.3 Being Animate−able...276

 9.3.1 Implementing Animate..276
 9.3.2 AnimatorThread...278
 9.3.3 Creating the AnimatorThread in the Constructor................................279
 9.3.4 A Generic Animate Object...281

 9.4 More Details..282
 9.4.1 AnimatorThread Details...282
 9.4.2 Delayed Start and the init Trick...285
 9.4.3 Threads and Runnables..287
 9.4.4 Thread Methods...287

 9.5 Where Do Threads Come From?..288
 9.5.1 Starting a Program...289
 9.5.2 Why Constructors Need to Return...292

 Chapter Summary...294
 Exercises...295

Chapter 10 Inheritance...297
 10.1 Derived Factories..298

 10.1.1 Simple Inheritance...299
 10.1.2 The java.lang.Object Type...300
 10.1.3 Superclass Membership...302

 10.2 Overriding...304
 10.2.1 The super Expression...305
 10.2.2 The Outside−In Rule..306
 10.2.3 Problems with Private..307

 10.3 Constructors are Recipes...308
 10.3.1 The this() Expression...308
 10.3.2 The super() Expression..309
 10.3.3 Implicit super()...310
 10.3.4 Multiple Views..312

 10.4 Interface Inheritance...312
 10.5 Relationships Between Types...313
 Chapter Summary...316

v

Table of Contents
Chapter 10 Inheritance

 Exercises...317

Chapter 11 When Things Go Wrong: Exceptions...319
 11.1 Exceptional Events..320

 11.1.1 When Things Go Wrong..320
 11.1.2 Expecting the Unexpected...321
 11.1.3 What's Important to Record...323

 11.2 Throwing an Exception...324
 11.3 Catching an Exception..329
 11.4Throw versusReturn...332
 11.5 Designing Good Test Cases..334
 Chapter Summary...336
 Exercises...337

Part 4 Refining Interactions..339

Chapter 12 Dealing with Difference: Dispatch..341
 12.1 Conditional Behavior..342
 12.2 Keywords if and else...344

 12.2.1 Basic Form...344
 12.2.2 The else Keyword..346
 12.2.3 Cascaded if Statements..349
 12.2.4 Many Alternatives..351

 12.3 Limited Options: switch..354
 12.3.1 Constant Values...354

 12.3.1.1 Symbolic Constants..355
 12.3.1.2 Using Constants..356

 12.3.2 Syntax..359
 12.3.2.1 Basic Form..359
 12.3.2.2 The Default Case...363
 12.3.2.3 Variations..364
 12.3.2.4 Switch Statement Pros and Cons..365

 12.4 Arrays..367
 12.4.1 What is an Array?..367
 12.4.2 Manipulating Arrays..371

 12.4.2.1 Stepping Through an Array Using a for Statement..................373
 12.4.3 Using Arrays for Dispatch...374

 12.5 When to Use Which Construct...376
 Chapter Summary...378
 Exercises...380

vi

Table of Contents
Chapter 13 Encapsulation..383

 13.1 Design, Abstraction, and Encapsulation...384
 13.2 Procedural Abstraction..385

 13.2.1 The Description Rule of Thumb..385
 13.2.2 The Length Rule of Thumb..387
 13.2.3 The Repetition Rule of Thumb..387
 13.2.4 Example...388
 13.2.5 Benefits of Abstraction..389

 13.3 Protecting Internal Structure...390
 13.3.1 private..391
 13.3.2 Packages...391

 13.3.2.1 Packages and Names...392
 13.3.2.2 Packages and Visibility...394

 13.3.3 Inheritance..396
 13.3.4 Clever Use of Interfaces...398

 13.4 Inner Classes...398
 13.4.1 Static Classes...399
 13.4.2 Member Classes...399
 13.4.3 Local Classes and Anonymous Classes...402

 Chapter Summary...407
 Exercises...408

Chapter 14 Intelligent Objects and Implicit Dispatch..409
 14.1 Procedural Encapsulation and Object Encapsulation.................................410
 14.2 From Dispatch to Objects...412

 14.2.1 A Straightforward Dispatch...412
 14.2.2 Procedural Encapsulation...413
 14.2.3 Variations...414
 14.2.4 Pushing Methods Into Objects...416
 14.2.5 What Happens to the Central Loop?..417

 14.3 The Use of Interfaces..418
 14.4 Runnables as First Class Procedures...422
 14.5 Callbacks...424
 14.6 Recursion..428

 14.6.1 Structural Recursion...428
 14.6.1.1 A Recursive Class Definition..430
 14.6.1.2 Methods and Recursive Structure...431
 14.6.1.3 The Power of Recursive Structure..432

 14.6.2 Functional Recursion...434
 Chapter Summary...436
 Exercises...437

vii

Table of Contents
Chapter 15 Event−Driven Programming...439

 15.1 Control Loops and Handler Methods..440
 15.1.1 Dispatch Revisited...440

 15.2 Simple Event Handling...443
 15.2.1 A Handler Interface..443
 15.2.2 An Unrealistic Dispatcher..444
 15.2.3 Sharing the Interface..446

 15.3 Real Event−Driven Programming..448
 15.3.1 Previous Examples...448
 15.3.2 The Idea of an Event Queue...448
 15.3.3 Properties of Event Queues..450

 15.4 Graphical User Interfaces: An Extended Example.....................................451
 15.4.1 java.awt..451
 15.4.2 Components...452
 15.4.3 Graphics...453
 15.4.4 The Story of paint..453
 15.4.5 Painting on Demand...455

 15.5 Events and Polymorphism..456
 Chapter Summary...458
 Exercises...459

Chapter 16 Event Delegation and java.awt..461
 16.1 Model/View: Separating GUI Behavior from Application Behavior.........462

 16.1.1 The Event Queue, Revisited..463
 16.2 Reading What the User Types: An Example..465

 16.2.1 Setting Up a User Interaction...465
 16.2.2 Listening for the Event...467
 16.2.3 Registering Listeners...469
 16.2.4 Recap..469

 16.3 Specialized Event Objects...470
 16.4 Listeners and Adapters: A Pragmatic Detail...472
 16.5 Inner Class Niceties..474
 Chapter Summary...476
 Exercises...477

Part 5 Systems of Objects..479

Chapter 17 Models of Communities..481

Chapter 18 Interfaces and Protocols: Gluing Things Together.............................503

viii

Table of Contents
Chapter 19 Client−Server Interaction Patterns...525

 19.1 What Is a Client−Server Interaction?..526
 19.2 Postal Services: An Example..526

 19.2.1 A Server Can Provide a Variety of Services......................................527
 19.2.2 You Can Have More Than One Provider of a Given Service............528
 19.2.3 Services Can Be Layered...529
 19.2.4 Roles Are Relative to a Service...529

 19.3 Implementing Client−Server Interactions...530
 19.3.1 Client Pull..531

 19.3.1.1 Locating the Server...531
 19.3.1.2 Client Pull Tradeoffs...532

 19.3.2 Server Push..533
 19.3.2.1 Registering with the Server...533
 19.3.2.2 Server Push Tradeoffs...533

 19.4 The Nature of Duals..534
 19.5 Pushing and Pulling Together...535

 19.5.1 Passive Repository...536
 19.5.2 Active Constraint...537

 Chapter Summary...539
 Exercises...540

Chapter 20 Synchronization..541
 20.1 An Example of Conflict..542
 20.2 Synchronization..542
 20.3 Java's synchronized Declaration...543

 20.3.1 Synchronizing Methods...543
 20.3.2 Synchronizing Blocks..543

 20.4 What Synchronization Buys You..544
 20.5 Safety Rules..544
 20.6 Deadlock...546
 20.7 Obscure Details...546

 20.7.1 Synchronization and Local Copies of State.......................................547
 20.7.2 Synchronized Blocks and Lock Object References...........................547

 Chapter Summary...549
 Exercises...550

Chapter 21 Network Programming..551
 21.1 A Readable Writeable Channel...552

 21.1.1 Tin Can Telephones...552
 21.1.2 Streams...554

 21.2 Using a Channel..555
 21.2.1 Streams for Writing..555

 21.2.1.1 Flushing Out the Stream...555

ix

Table of Contents
Chapter 21 Network Programming

 21.2.1.2 A Scribe Example...557
 21.2.2 Streams for Reading...559

 21.2.2.1 Reading and Blocking...559
 21.2.2.2 A Lector Example...560

 21.2.3 Encapsulating Communications..562
 21.3 Real Streams...564

 21.3.1 Abstract Stream Classes...564
 21.3.2 Decorator Streams..565
 21.3.3 Stream Sources...567
 21.3.4 Decoration in Action..568

 21.4 Network Streams: An Example..568
 21.4.1 Starting from Streams..569
 21.4.2 Decorating Streams..570
 21.4.3 Sockets and Ports...570
 21.4.4 Using a Socket...571
 21.4.5 Opening a Client−Side Socket...572
 21.4.6 Opening a Single Server−Side Socket...572
 21.4.7 A Multi−Connection Server...574
 21.4.8 Server Bottlenecks...574

 Chapter Summary...576
 Exercises...577

Index..579

x

Part 1

Introduction to
Interactive Program Design

2 Part 1 Introduction to Interactive Program Design

Chapter 1

 Introduction to Program Design

Chapter Overview

 What is a computer program?•

 What are the parts of a program? How are they put together?•

 What kinds of questions does a program designer ask?•

In this chapter you will learn how a computer can be controlled by a set of instructions
called a program. This chapter introduces two different aspects of computation:
single−minded instruction−following and coordination among instruction−followers.
The programs in this book involve both aspects of computation.

The first aspect of computation is as step−by−step instruction−following, like the
process of making a single sandwich. This kind of computation is a sequence of
instructions that produces some desired result. The question that drives this part is “What
do I do next?” Pieces are put together using instructions like “Next...,”
“If...then...else...,” and “Until...” This kind of computation has an end goal that
execution of these instructions will accomplish. The programs in this book use short
sequences of instructions, executed over and over, to create entities that can provide
services or respond to requests (e.g., a sandwich−maker).

The second aspect of computation involves coordinating among many of these
instruction−following entities. This is like gathering the sandwich−makers (and
table−waiters and others) together to run a restaurant. This kind of computation is

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

creating (and managing) a community. The driving questions are “Who are the members
of the community?,” “How do they interact?,” and “What goes inside each one?” The
members of the community — the instruction−following entities — are glued together
through their interactions and communications. Executing this kind of computation
provides an ongoing program such as your car's cruise control, a web browser, or a
library's card catalog.

When you finish this chapter, you will know the basic questions to ask about every
computational system. These questions will allow you to begin to design a wide variety
of computer programs.

Objectives of this Chapter

 To understand the first aspect of computation: step−by−step
instruction−following, like the process of making a single sandwich.

1.

 To learn (informally) some of the programming primitives for such
instruction−followers.

2.

 To understand the second aspect of computation: constituting a community of
interacting entities and coordinating their interactions.

3.

 To learn the questions that drive the design of a program.4.

 To introduce the development cycle of a program.5.

 To introduce the role of an interactive control loop.6.

1.1 Computers and Programs

Computers provide services. A suitably equipped computer can retrieve a web page,
locate the book whose author you're thinking of, fly an airplane, cook dinner, or send a
message to your friend half way around the world. In order for a computer to do any one
of these things, two things must happen. First, the computer must be told how to provide
the required services. Second, the computer must be asked to do so.

The how−to instructions that enable computers to provide services are called programs.
A computer program is simply a set of instructions in a language that a computer can be
made to follow. When the computer actually follows the program instructions, we say
that it is executing that program. The program is like the script for a play. It contains
instructions for how the play should go. But the script itself is just a piece of paper: no
actors, no costumes, no set, no action. Executing a program is like performing the play.

4 Chapter 1 Introduction to Program Design

Now there is something to watch.

This analogy goes further, too. The same script can be performed multiple times, just as
the same program can be executed again and again. If audience reaction (or the director's
interpretation, or the theater, or the time of day) influences the performance, two
performances of the same script may be quite different. Similarly, user input, hardware,
software, or other environmental circumstances may make two different executions of the
same program quite different from one another. (Think of running the same word
processing program on two different occasions; the experiences are extremely different
even though the computer follows the same general−purpose instructions both times.)

When you sit down at a computer, someone else has already told it how to do a lot of
things. For example:

 When you press the power switch, it boots up, i.e., gets started running, in the
way that it has been instructed to. Personal computers typically come with a fairly
sophisticated set of startup instructions already installed. Simply turning on the
computer causes the computer to execute this startup program.

[Footnote: Starting a computer is called booting it up, presumably from the
phrase “pulling yourself up by your bootstraps.” The startup program that a
computer executes each time that it is turned on is called the computer's boot
sequence.]

•

 Each computer has a program that it runs automatically. The program that your
desktop or laptop PC runs is called its operating system.

•

 A disk drive — which is really a separate computer plus the electronic equivalent
of a huge filing cabinet — comes equipped with instructions for how to retrieve
information from (or store information in) that filing cabinet plus how to transmit
that information across the cable that connects the disk drive with your “main”
computer.

•

 A microwave oven comes with a computer that follows instructions for how to
tell time and how to turn on its microwave generator for specified periods.

•

 The library's card catalog provides lookup services.•

 Your car's cruise control accelerates and decelerates to keep your car moving at a
steady rate.

•

 A web browser fetches and displays information that it retrieves (at your request)
from the hard drives (file cabinets) of computers scattered around the world, with
the assistance of the “web server” programs running on those distant computers as
well as the network (transmission) services provided by a set of intervening

•

Chapter 1 Introduction to Program Design 5

computers.

When you load a new piece of software onto your computer — a cool new game, for
example — what you are actually doing is giving your computer a copy of the program:
the set of instructions that tells it how to do display graphics and make appropriate sound
effects or whatever it is that the particular piece of software does. Writing down these
instructions was the job of the person (or people) who wrote the software, the
programmer. Loading the software makes the instructions (the script) available to your
computer. Just having these instructions lying around doesn't do you much good, though.
To actually play the game (perform the play), you need to do one more thing. You need
to run the program.

[Footnote: Some computer games can be run off of removable media, like CD−ROMs. In
this case, you don't need to load the program onto the computer, but you do need to make
sure that the disk is in the drive, i.e., that the instructions are available to the computer.]

Tomorrow, if you want to play the game again, you only have to run it; you don't have to
start by loading it onto your computer.

1.2 Thinking Like a Programmer

A computer program — “how−to” instructions for your computer — must be written in a
language that the computer can follow. There are many languages designed for
instructing computers. These languages are called programming languages, and they are
typically quite different from the kinds of languages in which people talk to one another.
One of the main differences between talking to a person and programming a computer is
the increased level of precision required to tell a computer how to do things. With people,
it is often possible to give very vague instructions and still get the behavior you want. A
computer has no common sense. You must be very specific with it. Your instructions
must be step−by−step, in great detail. In some ways, programming a computer can be a
lot like talking to a very young child or a creature from a different planet.

Imagine teaching a Martian how to make a peanut butter and jelly sandwich. You need to
give detailed, step−by−step instructions:

 Get a loaf of bread.1.
 Remove two slices of bread and put them on the counter.2.
 Get a jar of peanut butter. Put it on the counter, too.3.
 Get a jar of jelly. Put it next to the peanut butter.4.
 Get a knife.5.
 Open the jar of peanut butter.6.
 Pick up a slice of bread.7.
 Using the knife, pick up a glop of peanut butter and spread it on the top of the
slice of bread.

8.

 ...9.

6 Chapter 1 Introduction to Program Design

These instructions tell the Martian, in very specific terms, what to do. To follow the
instructions, the Martian simply needs to perform each step, one by one, in the order
given. As long as each of these instructions is one that the Martian knows how to
perform, when the Martian finishes executing this program, the Martian will have a
peanut butter and jelly sandwich.

If there is an instruction here that the Martian does not understand, that instruction needs
to be rewritten in more detail so that the Martian will be able to execute it. For example,
“pick up a glop of peanut butter” might require further explanation:

 Insert the knife blade half−way into the jar of peanut butter.a.
 Remove the knife from the jar of peanut butter at a slight angle so that
some peanut butter is carried out of the jar by the knife.

b.

 ...c.

An instruction that needs further explanation before the Martian (or computer) can
execute it is one that we call a high level instruction. We can use high level instructions
in our programs only if we can supply additional instructions to explain how to actually
execute these higher level instructions.

Although we don't know what instructions Martians are likely to understand, a
programmer knows what kinds of instructions are a part of the particular programming
language in which she is developing a computer program. In this book, we will use a
programming language called Java. As you read this book, you will learn how to think
like a programmer and how to write instructions that computers can understand. You will
also learn specifically about the kinds of instructions that are part of the Java
programming language.

As a programmer, you will design sequences of instructions much like the peanut butter
and jelly sandwich instructions. The goal of such a sequence is to get something done, to
find an answer or to create something. In order to design a program like this, you will
need to repeatedly answer the question, “What do I do next?” until you have reached
your desired result. In many ways, this approach makes computers seem much like
sophisticated calculators. In fact, this is where computers got their start: the word
computer used to refer to people who did (mathematical) computations, and the original
mechanical computers were designed to perform these computations automatically.

When you are designing a program, you should ask yourself, “What do I do next?” You
don't necessarily have to write out all of the basic steps in one long sequence. You can
group them together in bigger, more abstract, higher level chunks:

 Assemble the ingredients.I.
 Spread the peanut butter.II.
 Spread the jelly.III.
 Put the sandwich together.IV.

Chapter 1 Introduction to Program Design 7

 Clean up.V.

This is a perfectly good set of instructions. But, as in the case of the Martian who didn't
know how to “pick up a glop of peanut butter,” these instructions will require further
elaboration. A programming language such as Java allows you to make up your own high
level instructions like “Assemble the ingredients” and then to explain how to do this:

“1. Get a loaf of bread. ... 4. Get a knife.”

Your program is complete only when every instruction is either understandable by the
computer or further explained in terms that are understandable by the computer. When
you are done asking yourself “What do I do next?” , you must then ask “How do I do
each of these things?” until every instruction of your program is something that the
computer knows how to do.

1.3 Programming Primitives, Briefly

What kinds of things do computers know how to do? Most computers don't know how to
make peanut butter and jelly sandwiches. Most computers do know how to manipulate
numbers and also other kinds of information, like words. In the Java programming
language, you will find tools that let you send messages to other computers on a network
or create windows and buttons to communicate with people using your programs. Other
computers may have special kinds of instructions. A robot control system has instructions
that tell the robot when, where, and how to move. A security system may have an
instruction to sound an alarm. These are the basic instructions out of which programs for
each of these systems can be constructed.

These basic instructions can be combined by sequencing them, as we've already seen.
They can also be grouped into mini−programs and given names, like “Assemble the
ingredients.” These names can then be used as new instructions. When the computer
needs to execute one of these new instructions, it simply looks up the rule for how to do
it. For example, when the Martian needs to assemble the ingredients, it uses the detailed
instructions: “1. Get a loaf of bread. ... 4. Get a knife.”

Instructions can also be combined in other ways. Sometimes, there is a choice to be
made. For example, after spreading a glop of peanut butter on top of the bread (step 8 in
the original list of instructions), the next step in the peanut butter and jelly program might
say:

 If the top of the slice of bread is covered in peanut butter, go to step 10.
Otherwise, go back to step 8.

9.

This step contains a choice; the next step might be 8 or it might be 10, depending on
whether the slice of bread is full. The Martian (or computer) executing this program will
have to keep track of which step comes next. This kind of choice step is called a

8 Chapter 1 Introduction to Program Design

conditional, and it is a common construct in programming languages. It is especially
useful when the answer to the question “What do I do next?” depends on something you
won't be able to figure out until you're executing the program.

We might want to go further, replacing steps 8 and 9 with a new kind of step that says

 Repeat the following substeps until the top of the slice of bread is completely
covered in peanut butter:

 Pick up a glop of peanut butter.a.
 Spread it on the top of the slice of bread.b.

8.

This step (“repeat until”) is called a loop. It, too, is a common construct in programming
languages. Some loops tell you to keep going until something is true (like the bread
becoming full), while others tell you how many times to do the steps inside the loop.
Some loops even go on forever. For example, a clock is basically a loop that moves its
hand(s) (or changes its display) once a minute. Loops are especially useful when part of
“What do I do next?” is to repeat (almost) the same thing several times.

Each of the techniques described above — sequencing steps, conditionals, loops, and
grouping steps into new basic steps (also called procedural abstraction) — is an
important part of building computer programs. You will learn more about how to do
these things in Part 2 of this book. These are the pieces that a programmer uses to answer
the questions “What do I do next?” and “How do I do each of these things?” But this is
only one part of the programming problem. The second part of programming is
coordinating the activities of many interdependent participants in a computational
community.

1.4 Ongoing Computational Activity

Some computer programs are very much like peanut butter and jelly sandwich making
instructions. They start with some ingredients and step−by−step calculate whatever it is
they're designed to create, producing an answer or result before stopping. The original
mechanical computers, which mimicked human computers performing mathematical
calculations, were very much like this. Sometimes, you would bring your program to a
computer operator and then come back the next day for the result!

Today, most computer programs aren't like this. Instead, computer programs today are
constantly interacting. They may interact with people, machines, other computers, or
other programs on the same computer. For example, a word processing program or
spreadsheet waits for you to type at it, then rearranges things on the page or recalculates
values as you type. A video game moves things around on your screen, some in response
to you and others by itself. A web browser responds to your requests, but also talks to
computers all across the network. The cruise control system for your car responds to road
conditions, sensor readings, and your input. A robot control system interacts with the
robot and, through the robot, with the robot's environment, perhaps with no human input

Chapter 1 Introduction to Program Design 9

at all.

These computations aren't concerned with solving some pre−specified problem and then
stopping. Most computations of interest these days are things called servers or agents or
even just applications. Most of them have some basic control loop that responds to
requests or other incoming information continually. These computations are embedded in
an environment and they interact with that environment: users, networks or other
communication devices, physical devices (like the car), and other software that runs at
the same time.

These programs are not just interacting with the things around them, either. In fact, each
of these programs may itself be composed of many separate pieces that interact with each
other (as well as with the world outside the program). Coordinating the activity among
the many entities that make up your program — and their interactions with the
world around them — is the second aspect of computer programming.

This is kind of like taking a group of Martians and organizing them to run a restaurant.
Some of the Martians will take orders from and serve food to the customers. Other
Martians will need to cook food for the customers. Still others will need to check on
supplies, make change, or coordinate other aspects of the restaurant's operation. Each of
these Martians will provide services to and make request of other Martians (or to the
restaurant's customers or suppliers or other parts of the environment in which the
restaurant is embedded). Coordinating the interactions among these Martians (and
between the Martian restaurant and its environment) involves different kinds of questions
from the instruction−following “What do I do next?”

Before we turn to the coordination of activity, though, let's look closely for a moment at
one of the Martians who will staff our restaurant. We will see that, deep down, peanut
butter and jelly programming still has an important role to play in creating computational
activity. Keep in mind that this Martian represents just one of the many things going on
in our restaurant.

The instructions that a Martian chef follows might look very much like this:

 Pick up a new food order.1.
 Find the instructions for the dish ordered and follow them.2.
 Put the completed dish and the order information on the counter for pickup.3.
 Go back to step 1.4.

Step 2 of this program is the kind of “higher level” step that we described above. It is not
itself complete; instead, it refers to other, more detailed instructions to be followed. For
example, if an order comes in for a peanut butter and jelly sandwich, the Martian chef
will need to use the instructions developed above for how to make a peanut butter and
jelly sandwich. A computer still follows simple sequenced steps written in a language
that it can execute. But while this Martian is making a peanut butter and jelly sandwich,

10 Chapter 1 Introduction to Program Design

another Martian is asking the customer at table 3 whether she would like some more
water. Later, the Martian waiter will come into the kitchen and pick up the sandwich that
the Martian chef just made. And when the Martian chef is done making the peanut butter
and jelly sandwich, the Martian will turn to the next food order, continuing its ongoing
interaction.

The peanut butter and jelly style of program instructions is an important part of how the
Martian chef does its job. But the Martian chef's instructions are not simply the steps of
the peanut butter and jelly program. The basic structure of the Martian chef program is an
infinite loop — a loop that goes on forever. This program accepts requests (in the form of
new food orders) and provides services (in the form of the completed dishes) over and
over again. We sometimes call this kind of loop — one that provides the main behavior
for a participant in the interactive program community — its control loop. Many program
community participants take this form, and we will look more closely at control loops in
Part 3 of this book. Programs with ongoing central control loops like this are the
members of our interactive computational community.

1.5 Coordinating a Computational Community

At its most basic level, every computer program is made of instructions that are followed,
one by one. But a single computer program may have many instruction−followers inside
it, just as our restaurant is run by many individual Martians. When you look at the whole
program — like the whole restaurant — you don't necessarily see the individual
instruction steps. Instead, you see coordinated activity among a group of interacting
entities. The behavior of this community — providing customers with hot meals — is not
the responsibility of any particular member of the community. Instead, it is the result of
many community members working together in a coordinated fashion.

Building modern interactive software involves something very much like organizational
design. We call this part of programming “constituting a community of interacting
entities.” The programmer's job is to figure out how to tell the computer what to do, and
no matter what the specific problem to be solved may be, there are fundamental questions
that each programmer must ask. Designing a computation which is a community of
interacting entities involves figuring out who the members of this community are, how
each one works, and how they interact. This is like setting the cast of a play, or deciding
what the sub−units of your business will be, as well as how they should interrelate. In
planning the organizational structure of your business (or program), you also have to
figure out how each unit works and what — and how — they are supposed to
communicate. These are the big questions of this second aspect of programming.

When you are designing this kind of activity, you ask yourself several questions:

 What is the desired behavior of the program?•

 Who are the entities who interact to produce this behavior?•

Chapter 1 Introduction to Program Design 11

 How do these entities interact?•

 What goes inside each entity (how does it work)?•

In the remainder of this section, we will expand these questions and begin to explore
them in somewhat greater detail. Understanding these questions and their ramifications is
the theme of this entire book. Coordinating communities is a special focus of Part 4.

1.5.1 What Is the Desired Behavior of the Program?

Before you can design a system to solve your problem, you must know what your
problem is. This involves knowing not only what you want, but how it should work or
fail to work under a variety of different circumstances.

Some questions that you ought to be able to answer about your desired program include:

 What services should your program provide?•

 What guarantees does your program make about these services?•

 Under what assumptions (circumstances, conditions) does your program make
these guarantees?

•

Consider the restaurant of the previous section. What can we say about its behavior? In
answering this question, we consider both the experiences of individual customers and
the ongoing properties that the restaurant must maintain, such as remaining solvent. A
basic specification of the service provided by the restaurant might be: Each customer is
seated at a clean table, the order is taken, food is served, a bill presented, and payment
collected.

There are a number of guarantees we want to make about these services. For example,
customers should not have to wait for an unduly long time. Different parts of the
restaurant must communicate; customers should not be charged for food that they were
not served, etc. Over time, the restaurant should take in at least enough revenue to cover
its operating expense. Supplies should not run out, nor should they rot.

We will make certain assumptions in order to be able to provide these guarantees. For
example, the “timely service” guarantee will be possible only if the load on the restaurant
is reasonable. We might decide that we will be able to uphold this guarantee only if the
number of people wanting to eat in the restaurant at one time never exceeds its capacity
and if the rate of arrival of these people doesn't exceed the rate at which the restaurant
can serve them.

[Footnote: How many customers the restaurant can handle at the same time is called its
bandwidth. How quickly each one can be served is called its latency. The number of

12 Chapter 1 Introduction to Program Design

customers per hour that the restaurant can handle is its throughput. These quantities —
bandwidth, latency, throughput — are common measures of program performance.]

These assumptions should be made explicit, and we will also need to say what happens
when they are violated. (In this case, the timely service guarantee won't be upheld, but
how slow the service gets should be related to how overloaded the restaurant is.)

There are other assumptions we do not make about our program, and we can articulate
these as well. We do not assume that only one customer will be served at a time. Instead,
we expect that multiple tables must be handled (roughly) simultaneously. It certainly
won't do to wait until the first has eaten, paid, and left before addressing the second. We
also permit different interactions with each table to be handled simultaneously or at least
overlapped: food may be cooking while checks are being written up.

This description is still fairly general, and we can imagine making it more specific. (For
example, are customers constrained to ordering off of a menu?) In general, the more
detail you can give of what your program ought to do, the easier your task will be in
designing and building it.

1.5.2 Who Are the Entities Who Interact to Produce the
Program's Desired Behavior?

This question can't be answered in isolation, because any and every decision you make
about who the entities are is also at least a partial commitment to what they are and how
they work. So answering this question is in many ways like solving the whole problem.
The trick is to answer this “who” question in fairly high−level, general terms, then to sit
down and try to hash out the answers to all of the “how they interact” and “how they
work” questions. In answering those, you'll almost certainly have to return to this “who”
question and rearrange your answer a few times. This is fine; it's even typical enough to
have a name: incremental program design.

In the restaurant, an appropriate high level division of labor might have a wait staff unit
(the people who deal directly with the customers), a kitchen staff unit (the people who
cook the food), and a financial unit (who keep track of how much which things cost,
collect money, and buy supplies). At this point, we haven't committed to whether these
are three roles played by a single Martian, three separate Martians, or even three groups
of several Martians each.

1.5.3 What Goes Inside Each Entity (How Does It Work)?

To answer this question requires knowing a bit about how each entity will interact with
the other members of its community. This means that answering “How does each entity
work?” is closely related to “How do they interact?” After all, specifying what
interactions each entity needs to support goes a far way towards telling you whether the
answers to the “How does each entity work?” questions meet the requirements of the

Chapter 1 Introduction to Program Design 13

community.

Some subsidiary questions to ask in order to determine how each entity works include:

 What responsibilities does it have?•

 What guarantees (promises, commitments) does it make? Under what
assumptions?

•

 What resources does it control?•

 Is it a community, too?•

For example, the restaurant's wait staff might be responsible for greeting the customers in
a timely fashion, supplying each one with a menu (a structure that the program will have
to provide and keep updated!), taking the order, delivering it to the kitchen staff, picking
up and serving the cooked meal, obtaining a price from the accounting entity, and
obtaining payment for that amount from the customer. The wait staff might guarantee to
communicate with (most of) the customers within minutes, provided the total number of
customers is limited and the maximum time spent with each is under a certain amount. It
might also promise to deliver food within some small amount of time after it's done
cooking, provided that the kitchen staff notifies the wait staff in a timely manner. The
wait staff controls menus, knows which food items were ordered by which customers,
and is the only part of the restaurant that deals directly with the customers. And so on.

When it comes to “What goes inside each entity (how does it work)?”, there are two
kinds of answers. One answer is that the behavior of the entity is accomplished by a
single rule−follower running an interactive control loop. We saw an example of this
when we considered the Martian chef earlier. In this case, we ask “What does the Martian
do next?” over and over, until we wind up with a well−defined set of instructions for this
Martian to follow.

The other possible answer to the question “What goes inside each entity (how does it
work)?” is that this entity is itself a community. (The wait staff might be further divided
into the person who takes the order, the person who clears the table, and the person who
serves the wine.) In this case, we need to figure out how to build each of these entities,
asking again “What goes inside each entity (how does it work)?” The problem of figuring
out how to coordinate the activity of a community continues until each community
member is a single (rule−follower) Martian. Then we ask about the instructions that this
Martian follows.

1.5.4 How Do These Entities Interact?

This question concerns coordination and communication among two or more entities.
Some of the questions that you should ask about how these entities interact include:

14 Chapter 1 Introduction to Program Design

 What are the entities' interfaces?

 What promises does each one make?♦

 What contracts does it fulfill?♦

 What services does it provide?♦

•

 How do they communicate?

 What mechanisms do they use?♦

 What interaction patterns do they use?♦

 How do they preserve liveness, i.e., how do they make sure that things
keep moving?

♦

•

 What interaction patterns are possible?•

 What happens when something goes wrong?•

A protocol is the specification for an interaction between two entities. For example, a
common protocol for the interaction between the wait staff and kitchen staff of a
restaurant involves a slip of paper with the customer's order written on it. The waiter
hangs this piece of paper in the window over the kitchen's food pickup counter, a place
where it will be easy to find when someone from the kitchen is ready for a new job.
When a member of the kitchen staff is ready to process the order, the piece of paper is
removed and used to guide the food preparation. When the order is ready, it is placed on
the food pickup counter together with the original order slip. This identifies the food with
the original request when the waiter returns to retrieve it. The slip of paper serves as a
crucial reminder of several associated pieces of information: what was ordered, by whom,
and where they are seated.

Protocols can also address temporal issues. For example, the wait staff/kitchen staff
interaction described in the preceding paragraph needs to happen in real time, meaning
that the protocol itself can't introduce significant delays. There must also be guarantees
made about the frequency with which the wait staff checks for completed dishes (or the
kitchen staff for incoming orders). If assumptions such as these are built into protocols,
they must be documented so that they are maintained in the behavior of participant
entities.

In contrast, the wait staff interacts with the financial unit by obtaining prices for food and
turning over any moneys collected. These interactions could happen in batch, meaning
that it is OK for the wait staff to get the price list at the beginning of the week or for
money to be handed over at the end of the day.

Chapter 1 Introduction to Program Design 15

[Footnote: Batch processing is like the old−fashioned computations in which you handed
your program to a computer operator and came back the next day for your results.]

The difference between real time and batch interactions is only one dimension that must
be determined in order to coordinate the activities of the members of your computational
community.

A protocol specifies the interface, or meeting, between various entities in the community
that constitutes your program. Once the interfaces have been thoroughly fleshed out, each
entity can in theory be implemented by a separate programmer (or team of programmers)
provided that it is built to spec, i.e., that it meets the specifications of the agreed−upon
interface.

In practice, the task of implementing an entity to match a given specification often results
in questions about or revision of that interface. Programming is not so neat a task as
students of computer science would often like to believe; there's a cycle of specification
and implementation, debugging and testing, usage and revision, that characterizes almost
all real−world software. The later stages of this process are sometimes called the
software life cycle; but the repeated revision that characterizes those later stages start
before a piece of software is even born.

1.6 The Development Cycle

The sections above concern the design of a computer program. Typically, you will be
given a set of specifications and some components that need to be integrated into the
system you build. Perhaps you will only be asked to build a single entity or to modify
existing entities to facilitate coordination. Regardless of your particular design problem,
you will find it useful to situate your task in the context of these six questions:

 What is the desired behavior of the program?•

 Who are the entities who interact to produce this behavior?•

 How do these entities interact?•

 What goes inside each entity (how does it work)? In particular, is each one made
of a community of entities or a single instruction−following control loop?

•

And, when we get down to instruction−followers:

 What does it do next?•

 How does it do each one of these things?•

16 Chapter 1 Introduction to Program Design

Once you have the answers to all of these questions, you can start to build your program.
Of course, you will already have found that you needed to go back to earlier parts of the
design process to modify or flesh out various decisions. You may also have shown your
completed design to other programmers — or, perhaps more importantly, to the users or
customers for whom you are creating this service — and revised your design
specification in response to their feedback.

The implementation phase of the project is no different. In building a program that is
supposed to meet your specification, you will often find that you need to go back and
change that specification. When this happens, you need to be careful to consider all of the
interdependencies that led you to your original design. That is, the development of
software is cyclic, beginning with design but often returning to it. It will not always be
desirable (or even possible) to change your design, but it is quite common to discover
additional assumptions or nuances that must be percolated through the design during later
phases of development.

When you begin to build your program, it is often advisable to implement only a small
piece of your system first. This may mean implementing only some of the entities, or it
may mean implementing all of the entities but only simple, basic versions of each. In
large scale system development, this initial phase is called prototyping. Even in most of
the smaller scale programs that you will encounter in your early coursework, it is a good
idea to utilize this approach of incremental program development. Part of developing
good programming skills involves learning to consciously and explicitly design a staged
development plan in which smaller simpler programs are constructed and tested, then
gradually expanded until the desired functionality is obtained.

Building a simpler version of your system gives you an opportunity to test your basic
approach before you have built up too much complexity. It also means that your bugs, or
program errors, will be easier to find. Bugs come in many flavors, ranging from simple
syntactic errors such as spelling mistakes, to programming errors such as incorrect
variable scoping, to conceptual design problems such as impossible−to−meet but critical
guarantees.

Even after you've found the bugs that keep your program from running, you will need to
subject your code to rigorous testing. This means trying out not only the “normal,”
expected behavior, but also checking how your program handles unexpected or
anomalous behavior. Think of your program as an opponent you're trying to trick; see if
you can get it to misbehave. This testing — when done right — will lead you to modify
your code or even your design.

This repeated cycling through and between the various stages of specification (or design)
development, implementation, and testing is a crucial skill for any good programmer.
Classroom programs are too often written once and tested on obvious cases. Most of the
time and money spent on real−world software is spent on revision and maintenance
rather than on initial development. Acquainting yourself with this cycle — and with

Chapter 1 Introduction to Program Design 17

writing clean, easy−to−read, reusable code — may be the most important part of
becoming a skilled programmer. These issues — together with a tour through the
development cycle — are the topic of the next chapter.

1.7 The Interactive Control Loop

This book focuses on the problem of designing interactive software. At the heart of our
approach is the idea of an interactive control loop. This is a simple program (set of
instructions) that repeatedly receives an input — a new request, a set of sensor readings,
or some other information — and responds appropriately. In the general case, the
response may involve initiating a series of other activities, so this kind of program can in
principle become almost arbitrarily complex. The basic idea is rather simple, though.

To conclude this chapter, we present an extremely simple interactive control loop. This
example will be used as a motivator for the development of the next part of the book. The
interactive control loop idea is a theme that runs through this entire book. In a way, it
might be thought of as the “atomic unit” or basic vocabulary element of this kind of
computation.

Perhaps the simplest interactive control loop is an echo program. When run, this program
waits for the user to type something. When the user finishes typing, the program simply
repeats back what it has been given. That is, it's a loop that gets some input, processes
that input (in this case trivially), and then spits out its result.

Although the echo program seems too trivial to be of much use, a minor variant of it runs
in almost every program you type to: it's what makes the characters appear on the screen.
Far more importantly, the basic structure of this program underlies essentially every
interactive computation. And it demonstrates many of the important properties of an
interactive computation:

 It is embedded in an environment (in this case involving a user's typing and a
display that the user can see).

•

 It is interactive (with that user, but we could have it talk to another program or
over a network instead).

•

 It is concurrent: other things happen at the same time that the program is
running. (In this case, the user might be typing the next line even while the echo
program is producing its output.)

•

The idea of an interactive control loop is the root of this approach to programming. By
putting together interactive control loops, you constitute a community of interacting
entities. Interactive control loops are what goes inside; communication between them is
how they interact. In other words, as they say, all the rest is corollary...

18 Chapter 1 Introduction to Program Design

Chapter Summary

 Computers follow special instructions, called a program, which is written in a
special programming language.

•

 Computation results when a computer has access to these instructions and
executes them.

•

 Each set of instructions must answer:

 What should the program do next?♦

 How should it do it?♦

•

 Groups of steps can be combined to make a “higher order” step.•

This is called procedural abstraction.

 Steps can involve choices or decisions.•

 Steps can be executed over and over again using a loop.•

 Most modern programs combine many separate looping instruction−followers
into an interacting community.

•

 Every computation is embedded in an environment and interacts with the other
(computational and physical) entities around it.

•

 The programmer's job in designing the program is to figure out:

 What is the desired behavior of the program?♦

 Who are the entities who interact to produce this behavior?♦

 How do these entities interact?♦

 What goes inside each entity (how does it work?)♦

•

 Program construction is a cycle of designing, building, testing, and then
designing again.

•

Chapter 1 Introduction to Program Design 19

Exercises

 Give step−by−step instructions for how to tie shoelaces.1.

 Select your favorite recipe and give step−by−step instructions for how to cook it.2.

 Give detailed directions for how to get from your classroom to where you live.
Include indications that will tell whether you've gone too far and how to get back
on track.

3.

 Specify the expected behavior for each of the following interrelated services
provided by a bank account:

 A deposit.a.
 A withdrawal request.b.
 Checking your balance.c.

Does your specification permit overdrafts?

4.

 You are at a fruit market. Describe the protocol by which you purchase a piece of
fruit from the fruit seller.

5.

 You are at a yard sale and see an old but comfortable−looking upholstered chair
that you are interested in buying. Describe the protocol by which you negotiate
for and (possibly) buy the chair.

6.

20 Chapter 1 Introduction to Program Design

 Describe the division of responsibility and coordination of activities among the
entities at a major airport.

In doing so, address the four key questions:

 What is the desired behavior of the system?a.
 Who are the entities who interact to produce this behavior?b.
 How do these entities interact?c.
 What goes inside each entity (how does it work)?d.

Your answer need not be complete but must address each of the above questions
at least somewhat. Your answer should occupy about one−half to one page,
single−spaced.

For the third and fourth of the four questions above, pick just two or three
interacting entities to discuss.

As with all written work for this course, your answer must be legible, should be
clear yet concise, and should avoid distracting errors like spelling errors.

7.

 Proceed as in the previous question, except this time:

Describe the division of responsibility and coordination of activities among the
entities at a major−league baseball game.

8.

 Proceed as in the previous question, except this time:

Describe the division of responsibility and coordination of activities among the
players on a soccer team.

9.

Chapter 1 Introduction to Program Design 21

22 Chapter 1 Introduction to Program Design

Chapter 2

 The Programming Process

This chapter has not yet been written.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

24 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 25

xxx

26 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 27

xxx

28 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 29

xxx

30 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 31

xxx

32 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 33

xxx

34 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 35

xxx

36 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 37

xxx

38 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 39

xxx

40 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 41

xxx

42 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 43

xxx

44 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 45

xxx

46 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 47

xxx

48 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 49

xxx

50 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 51

xxx

52 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 53

xxx

54 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 55

xxx

56 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 57

xxx

58 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 59

xxx

60 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 61

xxx

62 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 63

xxx

64 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 65

xxx

66 Chapter 2 The Programming Process

xxx

Chapter 2 The Programming Process 67

xxx

68 Chapter 2 The Programming Process

Interlude A

 A Community of Interacting Entities

Chapter Overview

 What are the basic concepts of Java programming?•

This interlude provides a whirlwind introduction to most of the basic concepts of Java
programming. It uses a simple community of word games and other String transformers
to illustrate this exploration.

This interlude is not intended to be read as standalone coverage of these ideas. Instead, it
introduces many concepts only briefly, but in context. Each of the programming concepts
presented here is reintroduced in much greater detail in the chapters of Part 2.

Objectives of this Chapter

 To increase familiarity with the design process.1.

 To understand how to describe a system design in terms of types, components,
and interactions.

2.

 To discover how design translates into executable code.3.

 To be able to read and begin to understand fragments of Java programs.4.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

A.1 Introduction: Word Games

When I was a child, we used to amuse ourselves by speaking to one another in a special
language called Pig Latin. The simplest version of Pig Latin has just one rule: To turn an
English word into a Pig Latin one, you take the first letter off the word, then add the first
letter plus “ay” to the end of the word. So, for example, “Hello” in Pig Latin is
“ello−Hay”, and “How have you been?” is “ow−Hay ave−hay ou−yay een−bay?” There
are more sophisticated rules for Pig Latin that deal with consonant blends and words that
begin with vowels, but the basic idea remains the same. It turns out that there are
children's games like Pig Latin in many, many languages, though each has a slightly
different set of rules. Another such game, popularized by the children's Public Television
show Zoom, is Ubby Dubby, in which you add “ubb” before every vowel (cluster):
“Hubbellubbo”, “Hubbow hubbave yubbou bubbeen?”

This interlude explores such word and phrase transformations. In fact, we're going to
build a system in which you can have many of these different Transformers, and you can
glue them together in almost any order. In this sense, the Transformers will be
interconnectable modules like LegoTM or CapselaTM.

Picture of Transformers

In addition to Transformers such as Pig Latin and Ubby Dubby, we'll want Capitalizers
(“HELLO”), Name Droppers (“Lynn says Hello”, or “Chris says Hello”, or “Pat says
How are you doing?”), even Delayers (e.g., that don't produce “Hello” until after they've
already received “How are you doing?”) or Network−senders (that can move one of
these strings−of−words from one computer to another). We'll also have some community
members that can read information that a user types to them or display information on a
computer screen. And we'll have Transformers that can listen to two different inputs,
producing only one output, as well as Transformers that can produce two outputs from
only one input. (The first of these is a Combiner; the second is a Repeater. The first is
good when you have lots of people trying to talk all at once; the second is a nice way to
circulate (or broadcast) information that needs to get to a lot of people.)

In the system that we're going to explore, we will need a way to create individual
transformer−boxes like the ones described above. We'll also need a way to connect them

70 Interlude A A Community of Interacting Entities

together. Finally, the transformer−boxes will need to act by themselves, to read inputs, do
transformations, and produce outputs. The complete system will be a community of
interacting entities, many of which will themselves be communities. At the most basic
level, each of these entities will need to follow specific instructions. In this interlude, we
will explore both the design of the community and the specific instructions that some of
these entities will follow.

A.2 Designing a Community

We need to design:

 What is the desired behavior of the system?•

 Who are the entities who interact to produce this behavior? That is, who are the
members of the community?

•

 How do these entities interact?•

 What goes inside each entity (how does it work)?•

We can start at the bottom (bottom−up design) or at the top (top−down design). Both are
legitimate and useful design techniques. However, in practice design often mixes these
techniques. In this case, we're actually going to start in the middle; in this particular
system, that is one of the easiest places to begin thinking about what we want to produce.

At the end of the design process, we should be able to sketch out a scenario for each of
the major interactions with our system, including what roles need to be filled (i.e., the
types of things in our system), who fills these roles (i.e., the individual objects that make
up the system), and how they communicate among themselves (i.e., the flow of control
among these objects).

A.2.1 A Uniform Community of Transformers

There are several communities implicit in the system that we're building. Let's start in the
middle, where the system can be understood as a community of interacting
Transformers. In this picture, each Transformer is an entity. The interactions in this
community are quite simple: Each Transformer reads in a phrase and writes out a
transformed version of it. In this system, we want to be able to interconnect these
Transformers in arbitrary ways. This means that the services each Transformer provides
will need to be compatible, so that one Transformer can interact with any other
Transformer using the same connection mechanism.

Interlude A A Community of Interacting Entities 71

 Transformer Entity interactions, version 1

 Read a word/phrase (from a connection).♦

 Write a word/phrase (to a connection).♦

We will accomplish this generic connection between Transformer entities using a
computer analog of the tin can telephones that we built as children. This is a simple
device that allows you to put something in one end and allows someone else to retrieve it
at the other end:

Picture of tin−can telephone

Take two tin cans with one end removed from each. Punch a whole in the center of the
intact end of each can. With a long piece of string, thread the two cans so that their flat
ends face each other. Tie knots in the ends of the string. Pull the string tight, so that it is
stretched between the two cans. Talk into one can; have someone else listen at the other.

The computer analog will be Connection objects that allow one Transformer to write a
word or phrase and another Transformer to read it from the Connection.

72 Interlude A A Community of Interacting Entities

Picture of Transformers and Connections

The Transformers on either end don't have to know anything about one another; they can
simply assume that the Transformers will interact appropriately with the Connection. And
the Connections don't have to know much of anything about the Transformers, either:

 Connection Entity interactions

 Accept a word/phrase written to you.♦

 Supply a word/phrase when requested (read).♦

Connections provide one particular way of providing interconnections among objects. In
this system, the components are designed so that any outputter can be connected to any
inputter. In other parts of this book, we will see examples of other kinds of interaction
mechanisms. For example, in some systems, the pieces to be interconnected are not
uniform. In others, the particular choices of interconnections must be made at the time
that the system is designed rather than while the system is running. In Part 4 of this book,
we will pay particular attention to the tradeoffs implicit in different interconnection
mechanisms.

A.2.2 The User and the System

Before we look at how each Transformer (and Connection) is built, let's step back from
this community of interacting Transformers to ask how it came into existence. At this
level, the members of our community are the user who constructs the community and the
system to be constructed. The user expects the system to provide a way to create
Transformer entities and a way to connect them.

Interlude A A Community of Interacting Entities 73

 System/User interactions

 Create a Transformer (of a specified type).♦

 Connect two Transformers (in a particular order).♦

We'll accomplish the first of these by adding another entity to the community: a user
interface containing a Control Panel that allows the user to specify that a Transformer
should be created as well as what type of Transformer it should be.

Picture here of Transformer community. [Picture of Control Panel & Transformers.]

The second interaction, connecting Transformers, we will handle by letting the user
specify two Transformers (through the user interface) and then asking the specified
Transformers to accept a new Connection. So allowing the system to interact with the
user creates one additional entity (the user interface):

 User Interface interactions

 Create a Transformer (of a specified type).♦

 Create a Connection between two Transformers.♦

and adds an interaction to the Transformer:

74 Interlude A A Community of Interacting Entities

 Transformer Entity interactions, version 2

 Accept an input Connection (or maybe more than one).♦

 Accept an output Connection (or maybe more than one).♦

 Read a word/phrase (from a Connection).♦

 Write a word/phrase (to a Connection).♦

[Picture of user interaction flow: click button −> create Transformer,

click Transformers −> create connection & request Transformers accept it.]

Specifically, the Control Panel will have buttons representing each kind of Transformer
available. Clicking on a button will create a new Transformer of the appropriate type.
Clicking on first one Transformer, then another, will create a Connection between them.
This task is actually cooperative: the user interface will create the Connection and it will
ask the Transformers to accept it.

A.2.3 What Goes Inside

In the two subsections immediately above, we've designed Transformer−Transformer
interactions (via Connections) and user−system interactions (via the user interface).
We've addressed the question of who our community members are (user interface,
Transformers, Connections, and — stepping back — the user) and, to a first
approximation, how they interact. In terms of system design, Transformers and
Connections represent kinds of things of which there may be many separate instances.
For example, a particular community of Transformers may contain five Transformers and
four Connections, or eight Transformers and three Connections, or twelve. Each
community will contain only a single Control Panel, though.

Interlude A A Community of Interacting Entities 75

The next step in a full design process would be to look inside each of these entities to
discover whether they are, themselves, monolithic or further decomposable into smaller
communities. We will not decompose the user interface further in this chapter; much of
the necessary background for this task will not be introduced until Part 3 of this book.
Instead, the remainder of this interlude will look inside the Transformer type to see how
these objects are built.

A.3 Building a Transformer

We have seen above the specification of the interactions that a Transformer entity will be
expected to fulfill. We can turn this interaction specification around to provide a
specification of the behavior that an implementation will need to satisfy: A Transformer
must be able to:

 Accept an input Connection.•

 Accept an output Connection.•

 Have its own instruction−follower that acts independently to read its input,
transform that input as appropriate, and write its output.

•

In fact, this Transformer is itself a community:

Picture here of Transformer community.

The Connection Acceptors are each entities that are activated only on a
connection−accept request; their jobs are to remember the Connections that they have
been handed. For example, the acceptInputConnection instructions basically say, “To
accept an input Connection (let's call it in), simply store in away somewhere so that you
can use it later.” There's also a little bit of additional code that tells the Connection
Acceptors what to do if they've already got an input Connection stored away.

Output Connections — another part of the community inside an individual Transformer
— are handled in the same way as input Connections. Also, some kinds of Transformers
will have entities that need to perform certain initialization activities when an individual

76 Interlude A A Community of Interacting Entities

Transformer is created. Finally, the independent instruction−follower is an additional
ongoing interacting entity. It makes use of the Connections (such as in) that the
Connection Acceptors have stored. Each Transformer will have its own
instruction−follower, allowing the Transformer to do its work without any other entity's
needing to tell it what to do.

For the moment, we will focus on the heart of the Transformer, the work done by this
independent instruction−follower, especially the transformation it actually performs. We
begin by looking at some specific Transformers and describing the behavior we expect.

A.3.1 Transformer Examples

The instructions for the behavior of a Capitalizer will say

 Capitalizer

 Read the input.1.
 Produce a capitalized version of it.2.
 Write this as output.3.

Every individual Capitalizer is the same, and each one does the same thing. You can tell
them apart because they're connected to different parts of the community and are
capitalizing different words, though.

NameDropper is a different kind of Transformer. Each individual NameDropper has its
own name that it likes to drop. So the instructions for a NameDropper will say

NameDropper

 Read the input.1.
 Produce a new phrase containing your name, the word “says”,
and the input.

2.

 Write this as output.3.

Variations in Transformer behavior aren't restricted to the transformation itself. Yet
another kind of Transformer is a Repeater. The repeater is different because it can accept
more than one output Connection: two, in fact. The instructions for a Repeater say:

Interlude A A Community of Interacting Entities 77

Repeater

 Read the input.1.
 Write this to one OutputConnection.2.
 Write this to the other OutputConnection.3.

And, of course, the instructions for a (simple) PigLatin should say

PigLatin

 Read the input.1.
 Produce a new phrase containing all but the first letter, then the
first letter, then the letters “ay”.

2.

 Write this as output.3.

As you can see, the basic instructions for a Transformer are of the form:

Basic Transformer

 Read the input.1.
 Produce a transformed version of it.2.
 Write this as output.3.

We will begin by looking at the second of these instructions.

A.3.2 Strings

In Java, there is a special kind of object, called a String, that is designed to represent
these words or phrases. In fact, in Java a String can be almost any sequence of characters
typed between two double−quote marks, including spaces and most of the funny
characters on your keyboard. (The double quotes aren't actually a part of the String itself;
they simply indicate where it begins and ends.) For example, legitimate Java Strings
include “Hello” and “this is a String” and even “&())__)&^%^^”.
(Strings don't have to make sense.) The Transformers that we will build are really
StringTransformers, since each one takes in one String at a time and produces a
corresponding, potentially new or transformed String as output.

78 Interlude A A Community of Interacting Entities

A.3.2.1 String Concatenation

Once you have a String, there are several things that you can do with it. For example, you
can use two Strings to produce a third (new) String using the String concatenation
operator, +. In Java,

“this is a String” + “%%^$^&&)) mumble blatz”

is for all intents and purposes the same as just typing the single String

“this is a String%%^$^&&)) mumble blatz”

[Footnote: Note that there is no space between the g at the end of String and the % at
the beginning of %%^$^&&)).]

So, for example, a NameDropper Transformer might use + to create a new String using
the input it reads, the name of the particular dropper, and the word “says”. Pig Latin
and Ubby Dubby might use +, too, but they'll have to pull apart the String they read in
first.

A.3.2.2 String Methods

Java Strings are actually rather sophisticated objects. Not only can you do things with
them, they can do things with themselves. For example, you can ask the String “Hello”
to give you a new String that has all of the same letters in the same order, but uses only
upper case letters. (This would produce “HELLO”.) The way that the String does this is
called a method, and you ask the String to do this by invoking its method. In this case,
the name of the method that each String has is toUpperCase. You ask the String to give
you its upper−case−equivalent by putting a . (dot) after the String, then its method name:

“Hello”.toUpperCase()

yields the same thing as “HELLO”.

You can also ask a String for a substring of itself. In a String, each character is numbered,
starting with 0. (That is, the 0th character in “Hello” is the H; the o is the 4th character.)

[Footnote: Computer scientists almost always number things from 0. This is apparently
an occupational hazard.]

So you can specify the substring that you want by supplying the index of the first
character of the substring, or by supplying the index of the first character along with the
index of the last character plus one. (So the difference between the two indices is the
length of the substring.) For example:

“Hello”.substring(3)

Interlude A A Community of Interacting Entities 79

is “lo” while

“Hello”.substring(1, 3)

is “el” and

“Hello”.substring(0)

is still “Hello”.

These and other useful functions are summarized in the sidebar on Selected String
Methods.

Selected String Methods

Below are some selected methods that can be invoked on individual Strings, along
with brief explanations and examples of their usage.

 toUpperCase() produces a String just like the String you start with, but in
which all letters are capitalized. For example:

“MixedCaseString”.toUpperCase()

produces “MIXEDCASESTRING”

•

 toLowerCase() produces a similar String in which all letters are in lower
case. So:

“MixedCaseString”.toLowerCase()

produces “mixedcasestring”

•

 trim() produces a similar String in which all leading and trailing white
space (spaces, tabs, etc.) has been removed. So:

“ a very spacey String ”.trim()

is just “a very spacey String”

•

 substring(fromIndex) produces a shorter String containing the same
characters that you started with, but beginning at index fromIndex. Bear in
mind that the index of the first character of a String is 0.

•

80 Interlude A A Community of Interacting Entities

substring(fromIndex, toIndex) produces the substring that begins at index
fromIndex and ends at toIndex− 1. So:

“Hello”.substring(3)

is “lo”

“Hello”.substring(1, 4)

is “ell”, and

“Hello”.substring(0)

is “Hello” again.

 length() returns the number of characters in the String. For example,

“Tee hee!”.length()

is 8. Since the String is indexed starting at 0, the index of the final character
in the String is the String's length() − 1.

•

 replace(old, new) requires two characters, old and new, and produces a
new String in which each occurrence of old is replaced by new.

[Footnote: A character is, roughly, a single alphanumeric or symbolic
character (one keystroke) inside single quotation marks. For more detail on
what exactly constitutes a character, see Chapter 3, Things, Types and
Names, and its sidebar on Java Primitive Types.]

For example,

“Tee hee!”.replace('e', '*')

produces “T** h**!”

•

 charAt(pos) requires an index into the String and returns the character at
that index. Recall that Strings are indexed starting at 0. So:

“Hello”.charAt(2)

returns the same character as “Hello”.charAt(3).

•

 indexOf(character) returns the lowest number that is an index of character•

Interlude A A Community of Interacting Entities 81

in the String. So:

“Hello”.indexOf('H')

is 0 and

“Hello”.indexOf('l')

is 2. Also,

“Hello”.indexOf('x')

is −1, indicating that 'x' does not appear in “Hello”.

 lastIndexOf(character) returns the highest number that is an index of
character in the String. So:

“Hello”.lastIndexOf('H')

is 0 and

“Hello”.lastIndexOf('x')

is −1, but

“Hello”.lastIndexOf('l')

is 3.

•

A.3.3 Rules and Methods

Using the String manipulations described in the previous section and sidebar, we can
construct the instructions that a variety of Transformers would use to transform a String.
For example, we might write:

to transform a String (say, thePhrase),
 return thePhrase.toUpperCase();

This rule describes the transformation rule for a Capitalizer. Note that thePhrase is
intended to stand in for whatever String needs to be transformed. The transformation rule
can't operate unless you give it a String. Within the body of the transformation rule, a
temporary name (in this case, thePhrase) is used to refer to this supplied String. The
formal term for such a piece of supplied information is an argument, and the formal term
for the temporary name that is used to refer to it is a parameter.

82 Interlude A A Community of Interacting Entities

A different transformation rule — this one for a pedantic Transformer that seems to think
it knows everything — might say

to transform a String (say, whatToSay),
 return “Obviously ” + whatToSay;

Note that we have chosen a different temporary name to represent the String argument.
The parameter name doesn't matter; we can choose whatever (legal Java) name we wish.

[Footnote: Legal Java names are covered in the sidebar on Java Naming Syntax and
Conventions in Chapter 3, Things, Types and Names.]

It can be the same name in every Transformer rule, or different in each one. It is only
important that we use the same name in a particular rule both when we're specifying the
parameter (in the first line of the rule) and in the body of the rule.

Question: Can you think of another kind of Transformer and write its rule? Remember,
it should take a String and produce a String.

The rules as we've presented them aren't really Java code, but they are pretty close. To
make them legal Java, we need to add a bit more formality and syntax (notation). The
formal name for a rule in Java is a method, just like the String methods — toUpperCase,
substring, etc. — above. Somewhere, someone has provided instructions for how to
toUpperCase so that you can use that method without worrying how it is done. Here, we
are providing the instructions for transform, so that someone else can use it.

A definition of Capitalizer's transform method might say:

String transform(String thePhrase) {
 return thePhrase.toUpperCase();
}

Aside from the syntax (the details of which are covered in chapters 6 and 7), the one big
difference from the rule specification above is that the method definition begins with the
word String to indicate that the method will produce a String when it is invoked.

Question: Quick quiz: How would you write the pedantic Transformer's transform
method?

A.3.4 Classes and Instances

What we just described was how to specify a rule. This rule is the rule used by all
Transformers of that particular type. In fact, the rule is really the only thing that
distinguishes Transformers of that type from other Transformers. We can describe a type

Interlude A A Community of Interacting Entities 83

of Transformer by wrapping the method definition in a bit of code that says it's a type. In
Java, a type that provides instructions implementing behavior is called a class.

class Capitalizer extends StringTransformer {
 String transform(String thePhrase) {
 return thePhrase.toUpperCase();
 }
}

This says that Capitalizer is a type (or class) that is very much like the more general class
StringTransformer. Its behavior differs from generic StringTransformers by using the
particular transform rule contained inside the braces {} that delineate Capitalizer's body.

Pedant is similar:

class Pedant extends StringTransformer {
 String transform(String whatToSay) {
 return “Obviously ” + whatToSay;
 }
}

Question: A class that uses your own Transformer rule should be very much like these.
Can you write it?

These classes are descriptions of what a Capitalizer or a Pedant should do. They are not
Capitalizers or Pedants themselves, though. They're really more like recipes from which a
particular Capitalizer or a particular Pedant can be made. To make a Capitalizer, you use
the special Java construction expression

new Capitalizer()

This “cooks up” a particular Capitalizer using the recipe we just wrote. A Pedant is
created similarly, but using a different recipe:

new Pedant()

If we say it again, we can “cook up” another Pedant:

new Pedant()

Stepping back, this is exactly what we want the buttons on our control panel to do.
Pressing the button marked Pedantic Transformer should invoke the expression

new Pedant()

84 Interlude A A Community of Interacting Entities

causing a Pedant to appear on our screen. Pressing it again should invoke it again,
making a second Pedant appear. We can connect these two together using other user
interface functions. Now, if we send the String “I'm here!” through a Connection to
the first Pedant, it should send the String “Obviously I'm here!” to the second
Pedant, and the second Pedant should produce “Obviously Obviously I'm
here!”.

Question: Connecting a Pedant's output to a Capitalizer's input and supplying the
Pedant with “not much” will produce “OBVIOUSLY NOT MUCH”. What happens if
you connect a Capitalizer's output to a Pedant's input?

Question: How about Pedant, then Pedant, then Capitalizer, then Pedant? Then
Capitalizer?

A.3.5 Fields and Customized Parts

You can already see from the examples in the previous subsection how one class, or type,
can describe many different instances. For example, phrases passed through the first
Pedant contain at least one “Obviously” at the beginning; phrases passed through the
second Pedant will begin with at least two “Obviously”s. But to really appreciate the
power of multiple distinct instances of a type, we need to look at a type that has local
state associated with each instance. The NameDropper Transformer type is a good
example of this.

The transformation rule for NameDropper is

to transform a String (say, thePhrase),
 return my name + “ says ” + thePhrase;

But my name here isn't a parameter. It isn't a piece of information that is supplied to the
NameDropper each time the NameDropper performs a transformation, the way that
thePhrase is. Instead, my name is a persistent part of the NameDropper. And it is a part of
the particular NameDropper instance, not a part of the NameDropper type. After all, each
NameDropper drops its own name.

So where does this name come from? As each individual NameDropper is created, it
must be supplied with a name. Then, the particular NameDropper remembers its own
name, and when it comes time to transform a String, the NameDropper uses its own
name.

To do this, we need to create a local storage spot that sticks around between
transformations. This is done using a special kind of name that is associated with the
NameDropper instance. Such a name is called a field. In this case, we'll use a field called
name, because that's what it will hold. To make it clear in our code that we're referring to
a field, we use a syntax sort of like saying my name; we refer to the field using

Interlude A A Community of Interacting Entities 85

this.name

In Java, this is a way of letting an individual instance say “my own.”

So the actual transform method for NameDropper should read:

String transform(String thePhrase) {
 return this.name + “ says ” + thePhrase;
}

This way, if one NameDropper has the name Pat and another has the name Chris, then
Pat would transform the String “Hello” into “Pat says Hello” while Chris
would make it “Chris says Hello”.

[Picture of Pat and Chris transforming the same String, with field visible.]

This method definition needs to be embedded in a class, of course. We also need to add a
bit more machinery to the class to make sure that the name is available when transform
needs it. The first change is to actually create a place to put the name; the second is to
write explicit instructions as to how to create a NameDropper so that it has a name from
the very beginning. This second — constructor — rule will need to say:

to construct a NameDropper with a String (say, whatMyNameShouldBe),
 assign my name the value of whatMyNameShouldBe;

When we translate this into Java using the special syntax for a constructor rule, it looks
like this:

NameDropper(String whatMyNameShouldBe) {
 this.name = whatMyNameShouldBe;
}

So the whole NameDropper class reads:

86 Interlude A A Community of Interacting Entities

class NameDropper extends StringTransformer {
 String name; // the persistent storage,

// a permanent part of each NameDropper

 NameDropper(String whatMyNameShouldBe) { // the creation rule
 this.name = whatMyNameShouldBe;
 }

 String transform (String whatToSay) { // the transform rule
 return this.name + “ says ” + whatToSay;
 }
}

Now, when we invoke NameDropper's construction method, we give it an argument:

new NameDropper(“Pat”)

for example.

We have actually seen — or at least alluded to — a similar situation earlier. When
discussing the other entities that together constitute a Transformer, we said that the input
Connection Acceptor's job was to stick the input Connection it receives somewhere
where the rest of the Transformer community can use it. Like NameDropper, the generic
StringTransformer accomplishes this using a field.

Fields, methods, and constructors are the building blocks of Java objects. We will
see each of these things in action in the next several chapters. In Chapter 7, Building New
Things: Classes and Objects, we will go through each of these items in greater detail. For
now, it is enough to have a general sense of how things fit together.

A.3.6 Generality of the approach

In writing this code, we have relied on the existence of a generic StringTransformer class.
In that class, we include rules for how to accept an input Connection (using a field to
store it away), how to accept an output Connection, and how to create an individual
StringTransformer, including creating its own instruction−follower to explicitly invoke
the transform method over and over again on each String read from the stored input
Connection. The ways in which this StringTransformer class is put together are much like
the ways in which the examples here are constructed, but the StringTransformer class is
about four times the size of the classes described above. The complete code for
StringTransformer is included in the on−line supplement to this book.

The Transformers that we have written here each obey the same general rules and
interfaces. Each defines a transform method that takes a String and returns a String. The
apparent uniformity among StringTransformers makes it possible for the Connection

Interlude A A Community of Interacting Entities 87

mechanism that we outlined in the previous section to work with each of them. The
differences among StringTransformer behaviors are hidden inside the transform method
that each of them implements. In the course of this book, we will see many different
cases in which hiding behavior behind a common interface makes a system more
general and more powerful. Good design specifications are crucial; they amount to
deciding in advance how entities will interact.

88 Interlude A A Community of Interacting Entities

Chapter Summary

In this Interlude, you have been exposed to many of the most basic pieces of Java
programming.

 None of these has been presented in sufficient detail to achieve mastery of it.•

 Each of these topics will be revisited, most in the next part of the book.•

But the example described above gives a context within which to place the detail that
occupies the next several chapters.

Here is what's ahead:

 In the next chapter, which begins Part 2 of this book, we will explore the role of
types in Java systems and the relationship between types and names.

•

 The next chapter in Part 2 (Chapter 4) looks at interfaces, the contracts that one
type of object makes with another.

•

 In Chapter 5, we turn to expressions — such as method invocation, field access,
instance construction, and even String concatenation — and learn how evaluating
an expression produces a value of a specified type.

•

 Expressions are combined to make the topic of Chapter 6: statements, the
step−by−step instructions of Java code that produce behavior and flow of control.

•

 Chapters 7 and 8 discuss classes, which allow us to implement behavior and to
encapsulate both instructions and local state — such as the NameDropper's name
— into individual objects.

•

 And self−animating objects, discussed in Chapter 9, contain their own
instruction−followers that execute sequences of instructions over and over,
communicating with other objects and interacting to provide desired behavior on
an ongoing basis.

•

Interlude A A Community of Interacting Entities 89

Exercises

See the text for things marked Question:. Also:

 Implement LowerCaser.1.

 Implement SentenceCaser: the first letter is capitalized, while the rest are not.2.

 Implement the simplest version of Pig Latin.3.

 An improved Pig Latin would leave the first letter in place if it were a vowel, and
add−way instead. This requires understanding basic conditionals and flow of
control: see Chapter 6, Statements and Rules.

4.

 Ubby Dubby is pretty hard. You may want to look carefully at Chapter 12,
Dealing with Difference: Dispatch, as well as earlier chapters.

5.

 Combiners and Repeaters involve extending StringTransformer in other ways,
overriding acceptInputConnection or acceptOutputConnection.

6.

 Really challenging problem: extract words, one word at a time, only reading an
input when all words have been used up.

7.

90 Interlude A A Community of Interacting Entities

Part 2

Entities and Interactions

92 Part 2 Entities and Interactions

Chapter 3

 Things, Types, and Names

Chapter Overview

 What kinds of Things can computers talk about?•

 How do I figure out what they can do (or how they interact)?•

 How can I keep track of Things I know about?•

This chapter introduces some of the conceptual structure necessary to understand Java
programs. It begins by considering what kinds of things a program can manipulate. Some
things are very simple—like numbers—and others are much more complex—like radio
buttons. Simple (primitive) things can't do anything by themselves, but in later chapters
you'll learn how to do things with them. Many complex things can actually act, either by
themselves (e.g. a clock that ticks off each second) or when you ask them to (e.g. a radio
that can play a song on request). These complex things are called objects.

The remainder of this chapter introduces two important concepts for understanding and
manipulating things in Java: typing and naming.

Types are ways of looking at things. A type specifies what a thing can do (or what you
can do with a thing). Types are like contracts that tell you what kinds of interactions you
can have with things. Sometimes, the same thing can be viewed in different ways, i.e., as
having multiple types. For example, a person can be viewed as a police officer or as a
mother, depending on the context. (When making an arrest, she is acting as a police
officer; when you ask her for a second helping of dessert, you are treating her as a
mother.) A thing's type describes the way in which you are regarding that thing. It does
not necessarily give the complete picture of the thing.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Names are ways of referring to things that already exist. A name doesn't bring a thing
into existence, but it is a useful way to get hold of a thing you've seen before. Every name
has an associated type, which tells you what sorts of things the name can refer to. It also
tells you what you can expect of the thing that that name refers to. In other words, the
type describes how you can interact with the thing that the name names. There are
actually two different kinds of names in Java: primitive (dial) names and reference
(label) names.

Sidebars in this chapter cover the details of legal Java names, Java primitive types, and
other syntactic and language−reference details.

Objectives of this Chapter

 To recognize Java types.1.

 To distinguish Java primitive from object types.2.

 To be able to declare and define names.3.

 To understand that a declaration permanently associates a type with a name.4.

 To recognize that each dial name contains exactly one value at any time.5.

 To understand how a label name can have a referent or have no referent (i.e., be
null).

6.

 To be able to tell when the values associated with two names are equal.7.

3.1 Things in Programs

In the first part of this book, we have explored what computational systems are and how
they are created. In this part, we will shift our focus to the things out of which such
systems are created. The previous part took a top−down approach to system design. In
this part, we will learn the basic building blocks that will enable us also to approach the
problem from the bottom up.

In building a computer program, we will make use of many things. Some of these things
are relatively simple and, when we need them, we can just write them down. For
example, 4 and −6.3 are things we might want in our programs, and we can put them
there just by writing them down in the appropriate place. But other things — like the
library's record for Moby Dick or the current location of the cursor — are harder to write
down explicitly, in the way that we were able to write 4 or −6.3 . For these kinds of

94 Chapter 3 Things, Types, and Names

things, we will need a way to refer to them without explicitly writing them down each
time. We do this using a name. A name is a way to refer to something in your program.
At any given time, a name refers to at most one thing. What the name refers to may
change over time, though, so the current location of the cursor may be (26, 155) now
and (101, 32) later. This is true in real life, too: the student whose birthday comes
next changes every time someone celebrates becoming a year older.

In this chapter, we explore how names refer to things in Java. We also explore some
specific kinds of things that can be included in a Java program. Although there are details
in this chapter that are particular to Java, many of the principles we identify work in
almost any computer programming language. These include:

 Names can be used to refer to things, allowing you to hold on to a thing even if
you can't spell it out entirely.

•

 Some things can be written directly into your program. These are called literals.•

In addition, in Java and in many other languages, each name can be used only to refer to
things of a particular type. A language in which a name is restricted to refer to things of a
particular type is called a strongly typed language. In a strongly typed language, live
Java,

 A name must be declared, meaning that you must explicitly say in the program
what type of thing this name can refer to.

•

3.2 Most Java Things are Objects

Different programming languages allow you to talk more or less easily about different
kinds of things. Some languages — like Basic — are very restricted in the kinds of things
that a program can talk about explicitly. Other languages — like Java — allow you to
create and talk about almost any kind of thing that you can imagine. Java is one of a
family of languages called object oriented programming languages. In Java, as in most
object oriented programming languages, most things — and all of the things that you will
create — are called objects. Almost anything that you can describe in a programming
language can be an object, so, in Java, object is a pretty general word for “programming
language thing.” Not all programming languages allow you to talk about objects, though,
and — towards the end of this chapter — we will learn about a few Java things that are
not objects.

An object can be just about anything that you might want to represent in a computer
program. Some example objects include the radio button that the user just clicked, the
window in which your program is displaying its output, and the URL of your home page.

Objects are frequently complex things with internal state. For example, the window may
have a “close” box or a background color; the URL has a host computer name. Many

Chapter 3 Things, Types, and Names 95

objects also know how to do things. The radio button may be able to tell you whether it
has been selected, or the window may know how to close. An object is a programming
language thing that can have complex internal state.

Some objects can even act on their own without being asked to do anything; they are
“born” or created with the ability to act autonomously. For example, an Animator may
paint a series of pictures rapidly on a screen, so that it looks to a human observer like the
picture is actually moving. The animator may do this independently, without being asked
to change the picture every 1/30th of a second. Similarly, an alarm clock may keep track
of the time and start ringing when a preset time arises.

We will begin by using objects that are provided to us, because it is important to learn
how to interact with an object. Many of the objects that you will use throughout your
programming career will be designed by other people for you to use. Later — in Chapter
7, Building New Things: Classes and Objects — we will learn how to build objects of our
own.

Almost everything that you do in Java uses objects, and you will hear much more about
them throughout this book. This chapter concentrates on how you identify the things
(including objects) in a program and how names can be used to refer to them. The next
chapter looks at interfaces, the contracts that one type of object makes with another. In
Chapter 5, Expressions: Doing Things with Things, we will see in more detail how to use
things (including objects) to produce other things. Chapter 6, Statements and Rules,
concentrates on combining these pieces into a full−blown recipe, a single list of
instructions that can be followed to accomplish a particular job. The three chapters
following (Chapters 7 through 9) look at objects in more detail, describing how to create
and use the objects that are manipulated by these instructions, and how these instructions
themselves can be combined to form objects and entities that interact in a community.

3.2.1 Doing Things with Objects

There are several ways to talk about an object. One is to call it by its name. For this to
work, the object must have a name, but fortunately, many objects do. For example, the
object that causes text to appear on your screen can be addressed — in this textbook and
its associated packages — using the name Console . Information about what you can do
with Console is contained in the sidebar below.

A name like this gives you direct access to the object it names. For example, I might have
a robot that I call robbie; then I can ask robbie to move using its name. I can also tell you
about robbie using this name. Below, you will see how to give names to things, and —
using that technique — I could even give robbie the nickname fred by giving the robot a
second name. A name like robbie or Console names the object, and is like a label that
allows you to access the object directly.

96 Chapter 3 Things, Types, and Names

There are also other ways to refer to an object without using a name for it. You can do
this, for example, by using a related object to help you. Imagine that mobyDick names a
book. Then

mobyDick.author()

might refer to the author of Moby Dick. The dot (.) and parentheses () are special syntax
(that is, notation) that indicate that we're asking the thing called mobyDick to tell us its
author. We will explore this syntax further in the next few chapters, but for now you can
regard it as a special incantation to use when you want to ask a thing for something that it
knows how to give you. (In the next chapter, we'll explore how you can find out what
kinds of actions a particular kind of thing can perform.)

Of course, we might be able to refer to the author of Moby Dick not only indirectly by
mobyDick.author() but also by using a name designated for this purpose, like
hermanMelville.

The name mobyDick might always refer to the same thing, as would
mobyDick.author(). But not all names have constant values. Imagine that
numberGuesser is the name of an object that knows how to guess numbers. The name
numberGuesser might even always refer to the same guesser. But you'd hope that an
expression like numberGuesser.guess() would refer to different values from one
guess to another, or the thing named numberGuesser wouldn't be much of a number
guesser! And if I come up with a better strategy for guessing numbers, I could make the
name numberGuesser refer to an entirely new object, too. We'll see more about giving
things names and changing the values referred to by names below.

One particularly useful kind of object is called a String. A String is a sequence of
characters. To describe a specific String in Java — for example, the message that your
computer prints to the screen when you boot it up — you can write it out surrounded by
double quotation marks: “Hi, how are you?” or “#^$%&&*%^$” or even “2 +
2”. Note that the quotation marks are not actually part of the String; they're just there to
make it clear where the String begins and ends.

Your computer doesn't understand the String, it just remembers it. For example, the
computer doesn't know of any particular relationship between the last example (“2 +
2”) and the number 4 — or the String “4”.

Strings are useful, for example, to communicate with a program's user. Error messages,
user input (i.e., what you type to a running Java program), titles and captions are all
examples of Strings.

Strings can do some interesting things. For example, if myName is “Rigoberto
Manchu”, then myName.toLowerCase() is “rigoberto manchu” and
myName.length() is 16. Strings are part of the Java language, so they are available to

Chapter 3 Things, Types, and Names 97

every Java program.

Another particularly useful object is Console, which is part of the cs101 libraries.

[Footnote: This means that Console is available only to Java programs that use the cs101
libraries (so named because they were developed as part of MIT's cs101 course). See the
sidebar on Console for how to obtain and use those libraries. Later in this book, we'll
learn how to replicate the function of Console using only things built in to Java, in case
you don't always want to use the cs101 libraries.]

Console is an object that can print a String to the Java console, a standard place where
someone running a Java program can look for information. Console can also readln a
String that the user types to the Java console.

Console

Console is a special object that knows how to communicate with the user in some
very basic ways. If your program says

 Console.println(“Hello there!”);

then the String “Hello there!” will appear on the Java console. (Remember,
the double quotation marks aren't part of the String; they're just used to indicate
where it starts and ends.) The statement

 Console.print(“Hi”);

is similar, except that Console.print doesn't end the line of output, while
Console.println does. This means that

 Console.print(“A ”);
 Console.print(“is for apple.”);

would produce the output

 A is for apple.

while

 Console.println(“A ”);
 Console.println(“is for apple.”);

98 Chapter 3 Things, Types, and Names

would produce

 A
 is for apple.

You can of course combine prints and printlns arbitrarily. Printing a String
containing a newline character escape (\n) causes the line to end as well.

You can also use Strings that are associated with names or any other Strings you
may have access to, not just String literals.

To use Console, you must install the cs101 libraries in your Java system and import
the cs101.util.Console package. Your instructor may have set this up for you or can
show you how to do so yourself. However, in all of the above examples, you could
replace Console by the name System.out, which is part of the standard Java libraries
(and hence needs no special action on your part to use it).

Console's most important virtue, besides being a good example of an object, is that
you can use it to capture Strings that the user types on the Java console. In
particular, the expression

 Console.readln()

returns a String, specifically the String typed by the user (and ending with a return
or enter character) on the Java console.

3.3 Naming Things

With all of these things floating around in our program, it is pretty easy to see that we'll
need some ways to keep track of them. The simplest way to keep track of things is to give
them names. This is called assigning a value to a name. Giving something a name is sort
of like sticking a label on the thing. We sometimes say that the name is bound to that
value.

Chapter 3 Things, Types, and Names 99

Java Naming Syntax and Conventions

Java identifiers can contain any alphanumeric characters as well as the symbols $
(dollar sign) and _ (underscore). The first character in a Java identifier cannot be a
number. So luckyDuck is a legitimate Java identifier, as is _Alice_In_Wonderland_,
but 24T is not.

Certain names in Java are reserved words. This means that they have special
meanings and cannot be used as names — i.e., to refer to things, other than any
built−in meaning they may have — in Java. Reserved words are sometimes also
called keywords. These are:

 abstract default if private throw
 boolean do implements protected throws
 break double import public transient
 byte else instanceof return try
 case extends int short void
 catch final interface static volatile
 char finally long super while
 class float native switch
 const for new synchronized
 continue goto package this

Java is case−sensitive. This means that double and Double are two different words
in Java. However, you can insert any amount of white space — spaces, tabs, line
breaks, etc. — between two separate pieces of Java — or leave no space at all,
provided that you don't run words together. You can't stick white space into the
middle of a piece of Java — a name or number, for example — though.

Punctuation matters in Java. Pay careful attention to its use. Note, however, that
white space — spaces, tabs, line breaks, etc. — do not matter in Java. Use white
space to make your code more legible and easier to understand. You will discover
that there are certain conventions to the use of white space — such as lining up the
names in a column, as we did above — although these tend to vary from one
programmer to the next.

A few names come already bound. Console is one example (provided that you are using
the cs101 libraries). Throughout this book, you will discover a few other pre−bound
names. But for other things, you will want to create your own names so that you can
continue to refer back to them.

To actually assign a value to a name — to create a binding between that name and that
value — Java uses the syntax (that is, notation):

100 Chapter 3 Things, Types, and Names

Assignment

 name = value

Recall the numberGuesser, above. We can ask the numberGuesser to guess a number, but
if we don't do anything with that guessed number, we will have no way to refer back to it.
It is as if soon after getting the guessed number from numberGuesser, it is dropped onto
the floor with all the other things that our program has created or used. Unless we have
somehow marked what numberGuesser gives us, we cannot get it back later.

Figure 3.1. If we don't do something with our things,
they get mixed up with the other things we used.

You can solve this problem by putting a label on the first guess when you get it. Then, if
you want it back later, you can ask for it by name: the name on the label. That is, we can
remember the guess our numberGuesser made by giving it a name:

myFavoriteNumber = numberGuesser.guess()

This associates the value guessed with the name myFavoriteNumber.

Chapter 3 Things, Types, and Names 101

Figure 3.2. By giving a thing a name, we can refer to it later.

If you want to continue to have access to something later, you'll need to give it a
name.

Once a particular name refers to a particular thing — say greeting has the value “Hi,
how are you?” — then we can use the name wherever we would use its value, with
the same effect. The name becomes a stand−in for the thing it refers to. In Chapter 5,
Expressions: Doing Things with Things, we will see that a name is a simple kind of
expression.

A name, like a label, can be affixed to only one thing at a time. In other words, only one
value may associated with a name at any given time. One thing can be referred to by any
number of names at once (including, potentially, no names at all). The same person can
be “the person holding my right hand,” “my very best friend,” and “Chris Smith.” But
only one person is “the person holding my right hand.”

[Footnote: Barring weird interpersonal pileups, of course.]

102 Chapter 3 Things, Types, and Names

Figure 3.3. A name refers to only one thing at a time.
But several different names can refer to the same thing.

But before we can assign a value to a name, we need to know whether the name is
allowed to label values of that type.

3.4 Types

Up to now, we've been pretty casual about our things. Java, however, is a strongly typed
language, meaning that it is not at all casual about what kind of thing something is. Each
Java thing comes into the world with a type, i.e., an indication of what kind of thing it is.
Java names, too, are created with types, and a Java name can only be used to label things
of the appropriate type. Before we can use a name — as myFavoriteNumber, above —
we have to declare it to be of a particular type. Declaring a name means stating that that
particular name is to be used for labeling things of some particular type.

3.4.1 What a Type Is

We have been using the idea of types all along, but in this section we make that idea
concrete and specific.

The type of a thing is an indication of what kind of thing it is. In particular, the type of a
thing:

 Tells you what kind of behavior you can expect from the thing.•

 Tells you what properties the thing has.•

 Provides a means for knowing what you can do with the thing.•

 Tells your computer something about how it should represent and manipulate the
thing internally.

•

Chapter 3 Things, Types, and Names 103

In English, we can refer informally to the kind of thing that something is, like “a number”
or “a description of a music CD.” In a programming language, we need to be more
precise. For example, one particular type of number in Java is called a short and can be
described more precisely as “a whole number between −32,768 and 32,767
represented by 16 bits.” (See the sidebar on Java Primitive Types for details.)

In this chapter, we'll be using types that someone else has defined. In the next several
chapters, we'll be learning how to figure out what a certain type of thing is like and what
you can do with it. In Chapter 7, Building New Things: Classes and Objects, we will at
last learn how to build our own types of things.

3.4.1.1 Two Kinds of Types: Primitive Types and Object Types

Some types are very specific and have very limited functionality. Such types are called
primitive types. The short type mentioned above is a primitive type: a short cannot
do anything on its own, although you can use shorts for arithmetic in the usual way.
There are exactly eight primitive types in Java. Later in this chapter (in Section 3.6), we
will see the details of the primitive types. In Chapter 5, Expressions: Doing Things with
Things, we'll see how to manipulate primitive−type things.

Most of what goes on in Java, though, concerns not primitive−type things, but rather
object−type things. As we've seen, an object can be just about anything that you might
want to represent in a computer program. Some example objects include the radio button
that the user just clicked, the window in which your program is displaying its output, and
the URL of your home page. Every object has an object type as its type.

Every type in Java is either a primitive type (as described in Section 3.6) or an
object type (as described in the next subsection).

3.4.1.2 Object Types

Java's standard libraries provide thousands of predefined object types, such as the String
type that we saw earlier in this chapter and the Button and JButton types that describe
clickable (GUI) objects that might appear in a window on your computer screen. If you
are using the cs101 libraries, you'll also have access to object types such as
AnimateObject — something that can move by itself — and DefaultFrame — an easy
kind of window to use. And, in the rest of this book, you will be learning to define your
own object types to do what you want. These object types — whether a part of the Java
language or of your own definition — describe kinds of objects.

Some examples of object types might include KlingonStarship (if you're building a space
battle adventure game), IllustratedBook (if you're building an electronic library system),
or PigLatinTranslator (if you're building a networked chat program). Each of these object
types may describe many different individual objects — the three KlingonStarships
visible on your screen, the five hundred and seven IllustratedBooks in the children's

104 Chapter 3 Things, Types, and Names

library, or the particular PigLatinTranslator that your particular chat program is using.
These individual objects are sometimes called instances of their types. For example, the
KlingonStarship that you just destroyed is a different KlingonStarship instance from the
one that is getting ready to fire its phasers at you. We'll explore this idea in greater detail
in Chapter 7, Building New Things: Classes and Objects.

Each kind of object — each object type — determines what services or actions individual
objects of that type can do. For example, Windows can close; Dictionaries can do
lookups; KlingonStarships can fly around the screen. Further, each individual object of
that type can perform these actions. For example, if myWindow and yourWindow are two
different window−type objects, myWindow can close, and so can yourWindow. But if
myWindow closes, that doesn't in general affect yourWindow.

Each individual object comes ready−made with all the properties and behavior that that
objects' object type specifies. An IllustratedBook has an author and an illustrator, for
example. A PigLatinTranslator may be able to translate a word that we supply it into Pig
Latin. We ask objects to do things (including telling us about themselves) using specific
services that these objects provide. Often, these services are accessed by giving the name
of the object we're asking followed by a dot (or period), followed by the request we're
making of the object. So if theLittlePrince is the name of an IllustratedBook,

theLittlePrince.getAuthor()

would be a request for the name of the author of the book: “Maurice de Saint
Exupery”. Similarly, if myTranslator is a PigLatinTranslator,

myTranslator.transform(“Hello”)

might be a request to myTranslator to produce the Pig−Latin−ified version of “Hello”,
which is “ello−Hay”. These requests are the most basic form of interaction among the
entities in our community.

3.4.1.3 What a Type Is: Summary

In summary, the type of a thing is an indication of what kind of thing it is. In particular,
the type of a thing:

 Tells you what kind of behavior you can expect from the thing.•

 Tells you what properties the thing has.•

 Provides a means for knowing what you can do with the thing.•

 Tells your computer something about how it should represent and manipulate the
thing internally.

•

Chapter 3 Things, Types, and Names 105

Some things (e.g., shorts) are primitive−type things, but most things in Java are
object−type things. String and Button are examples of predefined object types that are
part of the standard Java libraries, while KlingonStarship might be an example of an
object type that you might define yourself. Only object−type things (which are called
objects) have behaviors or properties of their own; primitive−type things can be used but
cannot do anything by themselves. We can use the dot−notation, as shown in the above
examples, to ask objects to do things for us.

3.4.2 Types of Objects

Every Java thing comes into the world with a type. As we will see in Chapter 7, Building
New Things: Classes and Objects, you use the new keyword to construct a new object.
For example, the expression

new Cat()

constructs a new object whose type is Cat.

The type of an object never changes. So, for example, the object created by the above
expression is a Cat and always will be a Cat. However, as we've seen, several names can
refer to the same object. These names each have their own type, as described in the next
section, and can be different types. For example, we might refer to the above Cat at one
time by a name that is a Pet and at another time by a name that is an Animal, depending
on what we need the Cat to do. Don't worry if this seems confusing; we'll discuss it in
much greater detail in Chapter 8, Designing with Objects.

3.4.3 Types of Names

As we have seen, each Java object comes into the world with a type, i.e., an indication of
what kind of thing it is. Every Java name has a type, too, and a Java name can be used
only to label things of the appropriate type. The type of a name is associated with the
name when the name is declared, as described shortly. The type associated with a
particular name never changes.

3.4.3.1 Declarations and the Type−of−Thing Name−of−Thing Rule

Before we can use a name — myFavoriteNumber, for example — we have to declare it
to be of a particular type. Declaring a name means stating that that particular name is to
be used for labeling things of some particular type.

Names are declared using the Type−of−thing Name−of−thing rule:

int myFavoriteNumber;
Cat marigold;

106 Chapter 3 Things, Types, and Names

The second word on each line is a name that is being declared. The first word on each
line is the type that the name is being declared to have. In the first line of the example
above, myFavoriteNumber is being declared to have type int. This is the Java primitive
type that we usually use for whole numbers (integers).

So the first declaration here creates a name, myFavoriteNumber, suitable for naming
integers (or, more precisely ints). The second line creates the name marigold, suitable
for naming objects of type Cat.

As the example shows, the primitive types begin with a lower−case letter, while object
types traditionally begin with an upper−case letter. Also, each declaration ends with the
semicolon (;) that concludes each statement in Java. More on semicolons and statements
in Chapter 6, Statements and Rules.

A name has a certain lifetime, sometimes called its scope. Within that scope — over its
lifetime — the name may be bound to many different values, though it can only be bound
to one value at a time. For example, myFavoriteNumber may initially be 4, but later
change to be 13. The association between a name and a type persists for the lifetime of
the name, however. Thus, myFavoriteNumber can only name an int, not a String or a
short or a Cat.

3.4.3.2 Definition = Declaration + Assignment

Declaring a name begins its useful lifetime. At that time, nothing else necessarily needs
to happen — and frequently, it doesn't. But sometimes it is useful to associate the name
with a value at the time that it is declared. This combination of a declaration and an
assignment is called a definition.

 A declaration tells you what type is associated with a name.•

 An assignment sets the value of a name, thereby telling you what value that name
is bound to.

•

 A definition combines the “what kind of thing it can name” and “what value it
has” statement types.

•

For example:

boolean isHappy = true;
double degreesCelsius = −273.18;
Thread spirit = new Thread(this);
Cat myPet = marigold;

The first and second of these make use of boolean and double constants, respectively, to
assign values to the names isHappy and degreesCelsius. Both boolean and double
are primitive types described in the sidebar on Java Primitive Types later in this chapter.

Chapter 3 Things, Types, and Names 107

The Thread definition creates a new Thread using the new keyword (much more on this
later) and associates the name spirit with that newly created Thread.

The final definition makes the name myPet refer to the same Cat currently named by
marigold. This is an example of the name marigold standing in for the actual Cat , that is,
the name being used in place of the thing it refers to. After the assignment completes,
myPet is bound to the actual Cat, not to the name. If the name marigold later refers to
some other Cat — say both Cats undergo name changes — the name myPet will still refer
to the Cat originally known as marigold.

Figure 3.4. myPet labels the Cat, not the name.
Changing the name of the Cat does not affect myPet.

So the name myPet still refers to the curved−tail cat, even if the cats switch names.

3.5 Names for Objects: Label Names

We have seen that there are two kinds of things in Java: object−type things (which are
called objects) and primitive−type things. Likewise, there are two kinds of names in Java:
names that are declared to be some object−type — which we will call label names — and
names that are declared to be some primitive−type — which we will call dial names.
This section examines the former; Section 3.6 examines the latter.

When a name is declared to be some object−type, a new label suitable for affixing on
things with that type is created. We will call such names label names or simply labels.
For example, a building name might be a cornerstone label, a person's name might go on
a badge, and a dog's name might belong on a collar. You can't label a person with a
cornerstone or pin a badge on a dog, at least not without raising an error. Unlike
cornerstones or dog tags, though, labeling a Java object doesn't actually change that
object. It just gives you a convenient way to identify (or grab hold of) the object.

108 Chapter 3 Things, Types, and Names

In Java terms, if we declare

RadioButton myButton;

this creates a label, myButton, that can be stuck onto things of type RadioButton. It is not
currently so stuck, though. At the moment, myButton is a label that isn't stuck to
anything. (Cornerstones and badges and dog tags don't come with buildings and people
and dogs attached, either. Having a label is different from having something to label with
it.) Labels don't (necessarily) come into the world attached to anything. The value of
a label not currently stuck onto anything is the special non−value null. (That is, null
doesn't point, or refer, to anything.) So the declaration above is (in most cases) the same
as defining

 RadioButton myButton = null;

Figure 3.5. A label name (myButton) that's not yet stuck on anything.
Its type is RadioButton, so it could become stuck onto any of the RadioButtons shown.

But currently it is not stuck on any of them, so its current value is null.

Of course, we can attach a label to something, though we need to have that something
first. We'll return to the question of where things come from in a few chapters. For the
moment, let's suppose that we have a particular object with type RadioButton, and we
stick the myButton label onto it. (Now myButton's value is no longer null.)

After we give myButton a value — stick it onto a particular RadioButton — we can refer
to it. For example, we can check to see whether it's pressed:

myButton.isSelected()

(This is an expression that returns a boolean value; see the discussion of expressions in
Chapter 5, Expressions: Doing Things with Things.)

If we now declare

RadioButton yourButton = myButton;

Chapter 3 Things, Types, and Names 109

a new label is created. This new label is attached to the same object currently labeled by
myButton. Assignments of label names do not create new (copies of) objects. In this
case, we have two labels stuck onto exactly the same object, and we say that the names
myButton and yourButton share a reference. This just like saying that “the morning star”
and “the evening star” both refer to the same heavenly body.

Figure 3.6. Multiple labels can refer to the same object.

Because myButton and yourButton are two names of the same object, we know that

myButton.isSelected()

and

yourButton.isSelected()

will be the same: either the button that both names label is pressed, or it isn't. But we can
separate the two labels — say

myButton = someOtherButton;

— and now the values of myButton.isSelected() and
yourButton.isSelected() might differ (unless, of course, someOtherButton
referred to the same thing as yourButton). Note that moving the myButton label to a new
object doesn't have any effect on the yourButton label.

Note also that the labeled object is not in any way aware of the label. The actual
RadioButton doesn't know whether it has one label attached to it, or many, or none. A
label provides access to the object it is labeling, but not the other way around.

3.6 Primitive Types, Literals and Dial Names

Objects are extremely useful, and every Java program that you use will make use of
objects. But there are a few other kinds of things that do not have the same complex
internal structure or behavior that objects have. These other kinds of things are called

110 Chapter 3 Things, Types, and Names

primitive−type things. This section describes such things and how to refer to them, by
using literals (Section 3.6.1) and by using dial names (Section 3.6.3).

3.6.1 Literals

Java, like many programming languages, has some built−in facilities for handling and
manipulating simple kinds of information. For example, Java knows about numbers. If
you type 6 in an appropriate place in a Java program, the computer will “understand” that
you are referring to an integer greater than 5 and less than 7. The expression 6 is a Java
literal: an expression whose value is directly “understood” by the computer. In addition
to integers, Java recognizes literals that approximate real numbers expressed in decimal
notation as well as single textual characters.

This means that all of the following are legitimate things to say in Java:

6•

42•

3.5•

−3598.43101•

Details of Java numeric literals — and of all of the other literals discussed here — are
covered in the sidebar on Java Primitive Types. As we will see in Chapter 5, Expressions:
Doing Things with Things, you can perform all of the usual arithmetic operations with
Java's numbers.

[Footnote: Be warned, though, that non−integral values, like 1/3 and
1.234567890123456789, are in general represented only approximately.]

Java can also manipulate letters and other characters. When you type them into Java, you
have to surround each character with a pair of single quotation marks: 'a', 'x', or '%',
for example. This enables Java to tell the difference between 6 (the integer between 5 and
7) and '6' (the character 6, which on my keyboard is a lower case '^'). The first is
something that you can add or subtract. The second is not.

It turns out that it's also useful for many programs to be able to manipulate conditions,
too, so Java has one last kind of primitive value. For example, if we are making
sandwiches, it might be important to represent whether we've run out of bread. We can
talk about what to do when the bread basket is empty:

if the bread basket is empty, buy some more bread ...

Chapter 3 Things, Types, and Names 111

Conditions like this — bread−basket emptiness — are either true or false. We call this
kind of thing a boolean value. Booleans are almost always used in conditional — or test
— statements to determine flow of control, i.e., what should this piece of the program do
next? Java recognizes true and false as boolean literals: if you type one of them in an
appropriate place in your program, Java will treat it as the corresponding truth value.

As we have just seen, primitive−type things can be referenced by literals. In addition,
Strings can be referenced by literals, by using the double−quotation mark syntax:

“I loves you porgy”

So all three of the following are literals:

“5” '5' 5

but the first is an object−type thing (a String), while the latter two are primitive−type
things (a char and an int, respectively).

There are lots of rules about how these different things work and how they are used. For
many of the detailed rules about the primitive things that we have just covered, see the
sidebar on Java Primitive Types.

3.6.2 Primitive Types

A type is Java's way of indicating what kind of thing something is and what it can do.
Like objects, Java primitive things have types. But unlike objects, you cannot create any
new Java primitive types. Java has exactly eight primitive types. These types are built
into the Java language, so they are always available to you. Four of these types
correspond to integers. Two of the types correspond to decimal numbers. One of types is
for single characters. The eighth type is for true−or−false values, or booleans. These are
all and exactly the primitive types permitted in Java. For details on these types, including
their names and their properties, see the sidebar on Java Primitive Types.

Java objects may have complex internal state or the ability to perform interesting
behaviors. Java primitive−type things do not have any internal state, nor can they do
anything by themselves. They cannot ring like an alarm clock, close like a window, or be
selected like a radio button. They cannot even add themselves or display themselves on a
screen. Only objects can be asked to do things for themselves. In Chapter 5, Expressions:
Doing Things with Things, we will learn how we can use primitive things to accomplish
useful tasks. But, unlike object−type things (objects), primitive−type things cannot
accomplish anything by themselves.

112 Chapter 3 Things, Types, and Names

Java Primitive Types

Each Java primitive type has its own built−in name. For example, int is a name for
a type−of−thing corresponding to an integer value. There are actually four Java
names for integers, depending on how much space the computer uses to store them.
An int uses 32 bits, or binary digits. An int can represent a number between
−2,147,483,648 and 2,147,483,647, that is, from −2 31 to 231 − 1 ,
which is big enough for most purposes. (You can't type commas in literal ints,
however.) An integral number (i.e., a number without a decimal point) appearing
literally in a Java program will be interpreted as an int.

If you need a larger range of numbers, you can use the Java type long, which can
hold values between −263 and 263 − 1. You can't just type in a value like
80951151051778, though. Literals intended to be interpreted as long must end
with the character L (or l):

 80951151051778L

There are also two smaller integer types: the 16−bit short and the 8−bit byte . There
are no short or byte literals. For most purposes, the int is probably the Java
integral type of choice. The limited range of all the integral types means that
calculations using such numbers can overflow and give wrong results. The
programmer must be aware of such limits.

Approximations to real numbers are represented internally using a notation called
floating point notation (so named because the decimal point can “float” as in
scientific notation). There are two primitive types for representing floating point
numbers, again corresponding to the amount of space that the computer uses to
store them. One is float, short for floating point; the other is double, for double
precision floating point. Both are only approximations to real numbers, and
double is a better approximation than float. Neither is precise enough for
certain scientific calculations.

A float is 32 bits. The biggest float is about 3.4 x 10 38; the smallest is about
−3.4 x 1038; The float type can represent numbers to an accuracy of about 8
significant decimal digits.

A double is 64 bits. The biggest double is about 1.8 x 10308; the smallest is
about −1.8 x 10308. The double type can represent numbers to an accuracy of
about 16 significant decimal digits.

The double type gives more precise representations (as well as a larger range)

Chapter 3 Things, Types, and Names 113

than the float type, and so is more appropriate for scientific calculations.
However, since errors are magnified when calculations are performed,
computations with large numbers of floating point calculations mean that
unless you are careful, the imprecision inherent in these approximations will
lead to large accumulated errors.

[Footnote: These issues are studied by the field of mathematics known as numerical
analysis.]

The default floating point literal is interpreted as a double ; a literal to be treated
as a float must end with f or F. (A double literal optionally ends with d or D .)

Floating point numbers can be written using decimal notation, as in the text, or in
scientific notation (e.g., 9.87E−65 or 3.e4).

The Java character type is called char. Java characters are represented using an
encoding called unicode, which is an extension of the ascii encoding. Ascii encodes
English alphanumeric characters as well as other characters used by American
computers using 8 binary digits. Unicode is a 16−bit representation that allows
encoding of most of the world's alphabets. Character literals are enclosed in single
quotation marks:

 'x'

Characters that cannot easily be typed can be specified using a character escape: a
backslash followed by a special character or number indicating the desired
character. For example, the horizontal tab character can be specified '\t';
newline is '\n''; the single quote character is '\''; double quote is '\“'; and
backslash is '\\'. Characters can also be specified by using their unicode numeric
equivalent prefixed with the \u escape.

The true−or−false type is called boolean. There are exactly two boolean literals:
true and false.

The names of all Java primitive types are entirely lower case. By convention,
we begin each non−primitive type with an upper−case letter.

The double−quoted−sequence−of−characters type is called String. String doesn't
actually belong in this list because, unlike the other types listed here, String is not a
primitive type. Note that its name begins with an upper case letter. String does have
a literal representation, though. (String is the only non−primitive Java type to have
a literal representation.) A String literal is enclosed in double quotation marks:

114 Chapter 3 Things, Types, and Names

 “What a String!”

It may contain any character permitted in a character literal, including the character
escapes described above. For example, the String “Hello, world!\n” ends
with a newline.

The names of Java primitive types are reserved words in Java. This means that they
have special meanings and cannot be used to name other things in Java. (See the
sidebar on Java Naming Syntax and Conventions.)

3.6.3 Names for Primitive−Type Things: Dial Names

If you want to refer to a Java object, you can do so using an appropriately typed name.
You can also refer to a Java primitive−type thing using a name. For example:

int myLuckyNumber = 6;
int yourGuess;

yourGuess = myLuckyNumber;

The first line creates a new name, myLuckyNumber, and binds it to 6. The second line
creates a new name, yourGuess, but does not explicitly give it any initial value.

[Footnote: In fact, Java provides a default initial value (in this case, 0). However, best
programming practice demands that one not rely on such default initializations.]

The final line assigns the value of myLuckyValue — 6 — to the name yourGuess.

So far, names with primitive type look a lot lot object names. But it turns out that there
are some important, if subtle, differences. Java names with primitive types aren't exactly
labels, as object names are. You see, there may be an unpredictably large number of
Buttons or KlingonStarships, and so a label is the best way to keep track of any particular
KlingonStarship that comes along. But Java primitives are different.

For example, there are only two boolean values possible in Java: true and false. If
I have two identical−looking KlingonStarships, they are still different ships. Blowing up
one doesn't blow up the other. But booleans are different. There is really only one
boolean true. Of course, there's not much that you can do with true — you can't
changetrue, the way you can repaint a KlingonStarship — so it's hard to see that there
is only one true. But there is.

This means that we can use a very different mechanism for a name that has type
boolean. We can, for example, use a switch as the name. Let's say we have a

Chapter 3 Things, Types, and Names 115

boolean name, isSunny. This name is just a switch. It is always set in one of the two
positions: on/true, or off/false. So if the switch corresponding to isSunny is on, we'll know
that isSunny is true. If the isSunny switch is off, we'll know that isSunny is false. We
can tell the value corresponding to the boolean name just by inspecting the switch.

Figure 3.7. A boolean name (here, isSunny) is just a switch.
On the left, the switch is on (true); on the right, the same switch is off (false).

But if we use a switch to indicate true−or−false, how do we do assignment? When we use
label names — for objects — we just stick a second label on the same object. When we
use switches as names, though, creating a new name means creating a new switch. So
what do we do when, for example, we have

boolean amHappy = isSunny;

(which means that I am happy if it's sunny, and not happy if it's not)? Simple enough: we
set the new switch — amHappy — to the same position that isSunny is in. (Note: We do
this once, at the time of the assignment. After that, the two switches are completely
separate. More on this later in this section.)

Figure 3.8. Copying values from one switch to another.

It turns out that this analogy works for all of the Java primitive types. For example, there
are only a fixed, finite number of ints possible in Java. (See the sidebar on Java

116 Chapter 3 Things, Types, and Names

Primitive Types.) Although it might be confusing to imagine a switch with 4,294,967,296
positions, you can imagine that an int name is just a very large dial with those same 4
billion settings. By reading the setting of the dial, you can tell what value an int name
corresponds to.

As remarkable as it may seem, each of the Java primitive types is represented in this way.
The dial here is metaphorical, but the actual representation is very much as described. A
Java primitive is stored in such a way that every name with a primitive type indicates its
value just as the metaphoric dial does. A name corresponding to a byte is simply a dial
with 256 positions. A long name has 264 positions. And even float and double names
have only finite numbers of positions; this is why floating point numbers don't really
represent real numbers and in fact aren't all that good for extreme precision calculations.

[Footnote: Even a double precision floating point number can represent only 264 values
between −1.8 x 10 308 and 1.8 x 10 308 , so many values just can't be captured
accurately. Note also that the actual precision of a double varies over this range.]

The char type ranges over many more values than just a through Z, but there are still
only 216 possible characters in Java, so a char name is like a dial with that many
positions.

For example,

int i;

associate i with a dial that's just the right size for a 32−bit integer.

How is this different from a label? There are at least three big differences.

 Labels can be null; dials cannot.

A label can be null, meaning that it is not “stuck” to any object. A dial cannot
be null; by the very nature of a dial, its hand is on some value.

1.

 When a type X label is declared, no object of type X is created; when a type
Y dial is declared, the dial acquires a type Y default value.

When a label of a certain object−type is declared, a label name appropriate for
that object−type is created (and storage allocated for it), but no object of that
object−type is created. When a dial of a certain primitive−type is declared, a dial
name appropriate for that primitive−type is created and also, by the very nature of
a dial, its hand is set to some value of that primitive−type.

2.

 Labels can “share” a value; dials cannot.3.

Chapter 3 Things, Types, and Names 117

Two labels can be stuck on to the same object; then, changing the object by using
the first label to reference it changes the (same) object referenced by the second
label. While two dials can have the same value (both are set to the same position
on the dial), the dials are independent — changing the setting on one dial never
changes the setting on another dial.

In particular, assigning one label to another means that both are stuck on the same
object (or both are null), so that they “share” a value. When one dial is assigned to
another, the setting on the latter dial is copied onto the former. That's it; after that,
the assignment is complete and the two dials go their separate ways. There is no
further relationship between the values on the dials.

The last point is worth a closer look. Consider the following two very similar−looking
sets of statements (one on the left, the other on the right):

int i; | Cat marigold;
i = 3; | marigold = new Cat();
 |
int j = i; | Cat phoebe = marigold;
 |
i = 4; | marigold.haveKittens();

In both cases, the first statement declares a name and the second statement assigns the
name a value. The name i on the left is a dial−name and is set to 3; the name marigold on
the right is a label−name and is set to a new Cat.

In both cases, the third statement declares another name and assigns the first name to the
second. However, assignment has a different meaning in these two cases. On the left, the
dial−name j is set to the same setting (3) as the dial−name i. On the right, the label−name
phoebe is stuck onto the same object that the label−name marigold is stuck on.

In both cases, the fourth statement changes something by using the first name (i on the
left and marigold on the right). However, the effects are quite different. On the left, the
value of i changes to 4, of course, but the value of j remains 3. If we asked whether j is 4,
the answer would be “No.” On the right, the object referenced by marigold has kittens, so
that (same) object referenced by phoebe has kittens. If we asked whether phoebe has had
kittens, the answer would by “Yes!”

118 Chapter 3 Things, Types, and Names

Figure 3.9. Dial names versus label names: the effect of assignment.
The left side of the figure shows the dial names i and j.

The right side of the figure shows the label names marigold and phoebe.
The middle row shows the different effects of assignment in the two cases.

To summarize:

 When you are using names that are declared to be of object−types, think of those
names as labels that can be stuck on objects of the declared type.

•

 When you are using names that are declared to be of primitive−types, think of
those names as dials that always are set to some physical point.

•

 This implies three key distinctions:

 Labels can be null; dials cannot.♦

 Declaring a label does NOT create an object of the declared type.♦

 Labels can “share” a value; dials cannot.♦

•

 It is easy to recognize primitive−types: they are all lower−case letters, while (by
convention) we always use an upper−case letter as the first letter of any
object−type.

•

Chapter 3 Things, Types, and Names 119

The dial and label metaphors that we have used here, while helpful, are not standard
terminology. Instead of labels you will often see the phrase reference−type names.
Instead of dials you will often see the phrase value−type names.

3.7 A Tale of Things and Names

To conclude this chapter, let's walk through an example of how things are named and
how names refer to things. This example involves a story that took place some years ago
at a fancy party, the kind of party where one leaves one's hat at the door and whose
attendees might include a few famous names...

This story concerns one such party and three such personages: Charlie Chaplin, King
George VI of England, and Eleanor Roosevelt.

First among our characters to arrive was Charlie Chaplin. He was wearing his usual
bowler hat.

Hat charlieChaplinHat;

The code above just tells us that charlieChaplinHat is a label suitable for naming a hat,
but we will also assume that the charlieChaplinHat label is, as usual, stuck on the
bowler:

Figure 3.10. The binding of charlieChaplinHat to Charlie Chaplin's bowler.

When Chaplin arrived in the lobby, he saw the hat check. He took off his hat and handed
it to the hat check. Fortunately the hat check had a checkHat method, requiring a Hat:

hatCheck.checkHat(charlieChaplinHat);

Of course, now Charlie Chaplin wasn't wearing a hat:

charlieChaplinHat = null;

So unburdened, he walked in to the party.

120 Chapter 3 Things, Types, and Names

Next to arrive was the King of England. He was wearing his crown.

Hat kingGeorgeHat;

Again, we assume that — prior to the execution of the rest of this code —
kingGeorgeHat is labeling the crown.

When King George arrived at the hat check, he, too, removed his hat and gave it to the
hat check.

hatCheck.checkHat(kingGeorgeHat);
kingGeorgeHat = null;

[Footnote: Question: What would have happened if the King had executed these lines
in the opposite order:

kingGeorgeHat = null;
hatCheck.checkHat(kingGeorgeHat);

]

Then he, too, went in to the party. Both men had a lovely evening at the party. Mr.
Chaplin left first. Reentering the lobby, he approached the hat check and observed that it
also provided a returnHat method. So he executed:

charlieChaplinHat = hatCheck.returnHat();

Much to his surprise, the hat handed to him by the hat check was not his simple black
bowler. Instead, it was the magnificent crown of the king of England. Chaplin was still
staggering around the lobby under the weight of his crown when King George emerged
from the party and approached the hat check.

kingGeorgeHat = hatCheck.returnHat();

I'm sure it won't surprise you to hear that the King now found himself in possession of the
simple black bowler. Being a man of simple good taste and few pretensions, George was
half tempted to leave with the hat, but it occurred to him that there might be some other
gentleman who would then regret the loss of such a sturdy topper. Further, he knew well
from experience that the crown of England can be a heavy burden and he hated the
thought that someone else might have to suffer under it. Turning, he saw Charlie Chaplin
staggering under just that burden.

“Sir,” King George observed, “It seems our headgear has been exchanged by the hat
check. Perhaps we should remedy this situation.”

And so the two men proceeded to try just that. But there was a problem. Between them,

Chapter 3 Things, Types, and Names 121

the men had only two hat labels, and each was occupied. For example they considered
executing

kingGeorgeHat = charlieChaplinHat;

but this would have resulted in both men holding the crown, and Mr. Chaplin's trustee
bowler lost in limbo with no way to retrieve it (since it would have been labelless). The
two men were puzzling over this dilemma when who should emerge from the party but
Eleanor Roosevelt. (She'd snuck in while the reader wasn't looking.) This savvy diplomat
immediately took measure of the situation.

“I see that you two gentlemen have run into a bit of difficulty. Perhaps I can be of some
assistance. You see, I am not wearing a hat, and so my head can be a temporary resting
place while the two of you work your exchange.

“First we will need a label for my hat:

Hat eleanorRooseveltHat;

“You see, of course, that there's no Hat there: eleanorRooseveltHat is null. It's simply a
label that could be stuck on a Hat; it's the potential Hat−holder representing my head.”

[Footnote: Actually, what Mrs. Roosevelt really said was, “As you can see,
eleanorRooseveltHat == null is now true, but of course you won't be
introduced to == , the identity operator, until Chapter 5.”]

Next, the erstwhile Mrs. Roosevelt offered to take the crown of England from Mr.
Chaplin, to which he readily agreed:

eleanorRooseveltHat = charlieChaplinHat;

Now, the tall thin diplomat and the short comic actor found themselves jointly holding
England's crown. At this, Mrs. Roosevelt suggested that Mr. Chaplin release the crown
by seizing instead the simple black bowler to which he was accustomed (and of which the
king of England was growing overly fond).

charlieChaplinHat = kingGeorgeHat;

Mrs. Roosevelt now had sole possession of the crown; Mr. Chaplin and King George
both held the bowler. At this, King George released the bowler to take possession of his
crown:

kingGeorgeHat = eleanorRooseveltHat;

Finally, Mrs. Roosevelt released her hold on the crown, freeing her to return to important
business:

122 Chapter 3 Things, Types, and Names

eleanorRooseveltHat = null;

(Of course, this step was not strictly necessary as each gentlemen now held the proper
hat. Mrs. Roosevelt simply wanted to leave open her options for wearing other hats later.)

And the three figures left the party satisfied that all was well.

Chapter 3 Things, Types, and Names 123

Chapter Summary

 Literals are things you can type directly to Java.•

 Java has eight primitive types:

char is the type for single keystrokes (letters, numbers, etc.)♦

int is the standard type for integers. Other integer types include byte,
short, and long.

♦

double is the standard type for floating point numbers, which are
approximations to real numbers. The float type is another
floating−point type.

♦

boolean is a type with only two values, true and false.♦

 The limited range of all the numeric types means that calculations using
such numbers can overflow and give wrong results. The limited precision
of the floating−point types means that repeated calculations involved them
can lead to large accumulated errors. The programmer must be aware of
such differences between computer arithmetic and real arithmetic.

♦

•

 All other Java types are object types.

 All eight of the primitive types begin with a lower−case letter.♦
 By convention, we begin each object type with an upper−case letter.♦

•

 String is the type for arbitrary text (sequences of characters). String is not a
primitive type, but Java does have String literals.

•

 Names can be used as placeholders for values. Every name is born (declared)
with a particular type, and can label only things having that type.

•

 Primitive types have dial names. A dial name always has an associated value.
Two dials cannot share a single value; each has its own copy.

•

 Object types have label names. Two label names can label the same object. A
label that is not currently stuck on anything is associated with the non−value null.

•

124 Chapter 3 Things, Types, and Names

Exercises

 Assume that the following declarations apply:

int i;
char c;
boolean b;

For each item below, give the type of the item.

42a.
−7.343b.
ic.
'c'd.
“An expression in double−quotes”e.
bf.
falseg.
“false”h.
ci.
'b'j.
“b”k.

1.

 For each of the following definitions, fill in a type that would make the
assignment legal.

[Footnote: There are several answers to some of these, but in each case only one
“most obvious” type. It is this “most obvious” type that we are after.]

__________ a = 3;

__________ b = true;

__________ c = 3.5;

__________ d = “true”;

__________ e = “6”;

__________ f = null;

__________ g = 0;

__________ h = '3';

__________ i = '\n';

__________ j = “\n”;

2.

Chapter 3 Things, Types, and Names 125

 This problem checks your understanding of assignment.

 Assume that the following statements are executed, in order.

int a = 5;
int b = 7;
int c = 3;
int d = 0;

a = b;
c = d;
a = d;

What is the value of a? of b? of c? of d?

a.

 Assume that the following statements are executed, in order.

int a = 5;
int b = 7;
int c = 3;
int d = 0;

a = b;
b = c;

What is the value of a? of b? of c?

b.

 Assume that the following statements are executed, in order.

char a = 'a';
char b = 'b';
char c = 'c';
char d = 'd';

a = b;
c = a;
a = d;

What is the value of a? of b? of c? of d?

c.

 Assume that myObject is a name bound to an object (i.e., myObject is not
null). After the following statements are executed in order,

Object a = myObject;
Object b = null;
Object c = a;

a = b;

d.

3.

126 Chapter 3 Things, Types, and Names

Is the value of a null or non−null? What about b? What about c? What
about myObject?

 Assume again that myObject is a name bound to an object (i.e., myObject
is not null). After the following statements are executed in order,

Object d = myObject;

d = null;

Is the value of d null or non−null? What about myObject?

e.

 Assume one more time that myObject is a name bound to an object (i.e.,
myObject is not null). After the following statements are executed in
order,

Object e = myObject;

myObject = null;

Now is the value of e null or non−null? What about myObject?

f.

 Which of the following could legitimately be used as a name in Java? (Note that
none of them would be wise choices for names, except possibly in a Star Wars
game, as none of them is likely to convey meaningful information to readers of a
program.)

3PO R2D2
c3po luke
jabba_the_hut PrincessLeia
Han Solo obi−wan
foo int
Double character
string goto
elseif fi

4.

Chapter 3 Things, Types, and Names 127

 Assume that the following declarations have been made:

int i = 3;
int j;
char c = '?';
char d = '\n';
boolean b;
String s = “A literal”;
String s2;
Object o;

Complete the following table:

Name dial or label? Value (or null)?
i

j

c

d

b

s

s2

o

5.

 Assume that there is an already−defined object type called Date and that today is
an already−defined Date name with a value representing today's date. Suppose
that you wanted to declare a new name, yesterday, and give it the value currently
referred to by today. This would be useful, for example, if it were nearly midnight
and we might soon want to update the value referred to by today.

Explain why the following attempt will not successfully solve this problem.

Date yesterday;

yesterday = today;

[Footnote: At this point of this book, you should understand why the above will
not work, but we have not yet discussed what would work. We'll see the basic
ideas for a successful solution in Chapter 7, Building New Things: Classes and
Objects. Also relevant is the discussion about clone and Cloneable in Chapter 10,
Inheritance.]

6.

 Continuing the previous problem, now assume that today is an already−defined
int (not Date) name with a value representing today's date, where 1 represents
January 1, and 32 represents February 1, and 33 represents February 2, and so on,
with 365 representing December 31. (Assume that this is not a leap year.) Again
suppose that you wanted to declare a new name, yesterday, and give it the value

7.

128 Chapter 3 Things, Types, and Names

currently referred to by today. Now, the problem is solvable with the tools from
this chapter.

Give the solution (that is, declare yesterday appropriately and give it the value
referred to by today). Then explain how this problem is different from the
previous problem.

 Recall again the tale of two hats. Later, after the events of that story were long
past, someone suggested that the problem here was that the hat check hadn't
issued claim checks, which might have changed the circumstances. These claim
checks would have been ints, not Hats.

“If the names had been dials rather than labels, would Mrs. Roosevelt's assistance
still have been needed?”

As it happens, there were claim checks involved, but Charlie Chaplin and King
George had clumsily dropped them, and they were unable to determine which
claim check was whose. That is why they'd each used the hatCheck.returnHat
method, rather than a method that required a claim check as input.

Suppose that the situation were as follows:

After the mixup, Mr. Chaplin found himself holding claim check 2:

int charlieChaplinCheck = 2;

while King George was in possession of claim check 1:

int kingGeorgeCheck = 1;

However, the crown can be retrieved only with claim check 2, the bowler only
with claim check 1. So the two gentlemen are now faced with a swap of integers
rather than hats. As the story originally unfolded, they gave up and later were
forced to proceed with the hat swap. Imagine, instead, that Mrs. Roosevelt had
walked up at that moment — when the claim checks needed rearranging.

Write code to resolve the situation without using the literals 1 and 2 further. You
may, of course, use charlieChaplinCheck and kingGeorgeCheck in your code, as
well as Mrs. Roosevelt.

8.

Chapter 3 Things, Types, and Names 129

130 Chapter 3 Things, Types, and Names

Chapter 4

 Specifying Behavior: Interfaces

Chapter Overview

 How do programs (and people) know what to expect?•

 How do I describe a part or property of an entity to other community members?•

This chapter introduces the idea of interfaces as partial program specifications. An
interface lets community members know what they can expect of one another and what
they can call on each other to do; in other words, interfaces specify “how they interact.”
In this way, an interface describes a contract between the provider of some behavior and
its user. For example, the post office promises to deliver your letter to its intended
recipient if you give it to them in the appropriate form. This promise (together with its
requirements for a properly addressed and stamped envelope, etc.) constitutes a part of
the post office's interface.

In this chapter, you will learn how to read and write Java interfaces. These allow you to
use code designed by others — in the same way that you can drop off an appropriately
addressed letter at the post office — and to tell others how to use the services that you
provide. You will also learn about things that an interface doesn't tell you. For example,
when you drop a letter off at the post office, you don't necessarily know whether it's
going by truck or by train to its destination. You may not know when it is going to arrive.
This chapter concludes with a discussion of what isn't specified by an interface and how
good documentation can make some of these other assumptions explicit.

This chapter is supplemented by a reference chart on the syntax and semantics of Java
interfaces.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To learn how to recognize and read Java method signatures.1.

 To understand how an interface specifies a contract between two entities while
separating the user from the implementation.

2.

4.1 Interfaces are Contracts

Programs are communities of interacting entities. How does one entity know what kinds
of services another entity provides? How do programmers know what kinds of behavior
they can expect from objects and entities that they haven't built? A key to understanding
these questions is the notion of interface.

An interface is a contract that one object or entity makes with another. Interfaces
represent agreements between the implementor (or builder) of an object and its users. In
many ways, these are like legal contracts: they specify some required behavior, but not
necessarily how that behavior will be carried out. They also leave open what other things
the parties to the contract may be doing.

An excellent example of a standardized interface is an electrical outlet. In the United
States, there is a particular standard for the shape, size, and electrical properties of wall
outlets. This means that you can take almost any US appliance and plug it in to almost
any US wall outlet and rest assured that your appliance will run. The power company
doesn't need to know what you're plugging in — there are no special toaster outlets,
distinct from food processor outlets, for example — and you don't need to know whether
the power company produced this electricity through a hydroelectric plant or a wind
farm. The outlet provides a standard interface, with a particular contract, and as long as
you live within the parameters of that contract, the two sides of the interface can remain
relatively independent.

Of course, there are places where this contract breaks down. US appliances don't
generally work in European outlets, for example. There are several standard electrical
outlet interfaces throughout the world. It isn't clear that one of them is particularly better
than another, but it is unquestionably true that you can't use one side of the US outlet
interface (e.g., a US appliance) with the other side of the European interface (a 220V
outlet). If you want to mix and match disparate interfaces, you will need a special adapter
component. The same is true for software.

There are also, even in the US, certain appliances that can't use standard wall outlets. For

132 Chapter 4 Specifying Behavior: Interfaces

example, an electric oven draws too much current, and so needs a special kind of wall
outlet. The physical connector — the plug — is different on this appliance, to indicate
that it fits a different interface. You can't plug an electric oven in to a standard US wall
outlet. This is because its needs don't meet the (sometimes implicit) constraints of
standard (15 or 25 amp) US circuits. Sometimes this happens in software, too — you
need a different interface because the standard one doesn't provide precisely the
functionality that you need.

4.1.1 Generalized Interfaces and Java Interfaces

The dictionary defines interface as “the common region of contact between two
independent systems.” In Computer Science, we use interface to mean the boundary
between two (or more) things. In general, when you are constructing a community of
interacting entities, interface refers to the “face” that one of these entities shows another:
what services it provides, what information it expects. One entity may, of course, have
many interfaces, showing different “faces” to different community members.

Interface is a piece of the answer to the question of how things interact.

User interface refers to the part of a computer program that the person using the
computer actually interacts with. For example, a graphical user interface (GUI) is one
that uses a certain interaction style, e.g., typically contains buttons and menus and
windows and icons. (Before GUIs, computer interfaces typically used text, one line at a
time, the way that some chat programs work now.) A good user interface takes into
account the properties of the program as well as those of human users. Not surprisingly,
humans and computers have different skill sets. Like user interfaces, every interface
should be designed bearing in mind the needs of the entities on both sides. We will learn
more about graphical user interfaces in particular in Parts 3 and 4 of this book.

This Computer Science use of the word interface is one sense in which we will use the
term in this book. In Java, there is a second, related but much more limited use of the
word interface. A Java interface refers to a particular formal specification of objects'
behavior. The keyword interface is used to specify the formal declaration of a
particular kind of contract guaranteeing this behavior. (For example, there might be an
interface defining clock−like behavior.) The Java language defines the rules for setting
out that contract, including what can and can't be specified by it. A particular Java
interface is a particular promise.

In this book, when we use the term Java interface or the code keyword interface, we
are referring to this formal declaration. When we use the term generalized interface, we
are referring to the more general Computer Science notion of interfaces. A Java interface
is one way to (partially) specify a generalized interface. There may be things that are part
of the general promise — such as how long a particular request might take to answer —
that can't be specified in a Java interface.

Chapter 4 Specifying Behavior: Interfaces 133

This chapter deals specifically with Java interfaces. The ideas of generalized interfaces
permeate all parts of this book; the generalized notion of an interface is central to
interactive program design. We will explicitly revisit this issue — generalized interface
design — in the chapters on Protocols and Communication in Part 5 of the book.

4.1.2 A Java Interface Example

Consider, for example, a counter such as appears on the bottom of many web pages,
recording the number of visitors. Most such Counting objects have a very simple
interface. If you have a Counting object, you expect to be able to increment it — add one
to the number that the Counting object keeps track of — or to be able to read — or get —
its current value. This is true pretty much no matter how the Counting object actually
works or what other behavior it might provide. In fact, by this description, a stopwatch
might be a special kind of Counting object that automatically increments itself. So we
might say that increment and getValue form a useful interface contract specifying what a
(minimal sort of a) Counting object might be. In Java, we write this as:

interface Counting { // gives the name of the interface
 void increment(); // describes the increment contract
 int getValue(); // describes the getValue contract
}

We will see below how to read this interface declaration.

Once you and I agree on an interface for a Counting object, I can build one and you can
use it without your needing to know all of the details of how I built it. You can rely on
the fact that you will be able to ask my Counting object for its current value using
getValue. Your code, which uses my Counting object, doesn't need to know whether
increment adds one point (for a soccer goal) or six (for a touchdown in American
football). It doesn't need to know whether I represent the current value internally in
decimal or binary or number of touchdowns, field goals, etc.

Your code should work even if I exchange my original Counting object for one that can
be reset before each game or each time I rewrite my web page, since your code depends
only on being able to increment and read the value of my Counting object. In turn, I can
go off and build a Counting object using whichever internal representations I wish to
provide, so long as I meet the contract's commitments (increment and getValue).

Of course, you may want to know more about my Counting object than what the
increment/getValue parts of the Counting interface tells you. Some of this information
may be contained in the documentation for Counting. (This Counting object's value will
always be non−negative.) Other information may be contained in the documentation for
my particular implementation. (My BasicCounter implementation of my Counting object
is guaranteed to increase; its value cannot decrease.) If you want to know whether my

134 Chapter 4 Specifying Behavior: Interfaces

clock provides additional services, though, you may need to use an interface that
specifies this additional behavior (e.g., a Resettable interface). We will discuss the kinds
of information conveyed by an interface, and that which should be included in interface
documentation, later in this chapter.

4.2 Method Signatures

In the StringTransformer interlude and briefly in the discussion of objects, we have seen
methods, behavior that objects provide. These methods are essentially rules for how to
accomplish particular behaviors. In an interface, we focus on the specifications for these
rules and not on the instructions for how to achieve them. That is, an interface is a
collection of rule specifications. Any object that implements that interface must
satisfy those specifications, though there are virtually no limits on how it might do
that.

The formal name for a rule specifications is a method signature. For example, the
Counting interface specifies two rules — increment and getValue — that every Counting
object must provide. The body of the interface declaration is these two method
signatures, or rule specifications. A method signature describes what things that rule
expects (or needs to know about) and what the rule will return. It also needs a name, so
that you can refer to and invoke the rule (of course). In Chapter 11, Exceptions, we will
see that there is one other kind of thing that can be a part of a rule specification.

Unlike the method itself, a method signature does not need a body. The body is the part
of the method (or rule) that contains the instructions specifying how to do the behavior,
and that is not a part of the interface/promise. The rule specification is only that part of
the promise that users of the object need to know: what request to make, what things to
give the rule, and what to expect back. The rule body — how to do the rule — is needed
only by the rule implementor, not by the rule user.

In the particular case of the Counting interface, there are two rules that every Counting
object must implement: increment and getValue. So the Counting Java interface would
need to specify these two method signatures.

Each method signature has three parts: name, parameter specification, and return
type. The next three subsections describe, for each of these three parts, both the
obligations of the designer of the interface and the ways in which the interface is used by
another entity.

[Footnote: There is actually one other part of some method signatures, the throws clause.
Every method signature must have a name, parameter list, and return type, but some
methods do not have a throws clause. The throws clause will be introduced in
Chapter 11, Exceptions. In addition, certain modifiers — such as abstract, explained
below — may be included in a method signature.]

Chapter 4 Specifying Behavior: Interfaces 135

4.2.1 Name

When you are designing an interface, a rule can have any name that you want to give it. It
is a good idea to give it a name that will help you (and the users of your code) remember
what it does. Remember the syntax of Java names — alphanumeric and a few symbolic
characters — from Chapter 3, Things, Types and Names, and that rule/method names
should start with a lower−case letter.

When you are using an interface, the name of the rule is whatever name the interface says
it is. Hopefully, the name was chosen well so that it is easy to remember and to figure out
what that rule does.

4.2.2 Parameters and Parameter Types

These are the things that your rule needs in order to work. (For example, the
StringTransformer's transform rule needs to know what String to transform.) A
parameter is a temporary name associated with a value supplied when the method is
called , i.e., when the rule that it represents is invoked. During the execution of the rule,
the parameter name can be used to refers to the supplied value.

When you are designing an interface, you will need to specify a type and a name for each
parameter. (The Type−of−thing Name−of−thing rule from Chapter 3, Things, Types, and
Names, strikes again.) The type can be any legal Java type (including both primitive and
object types); the name can be any Java−legal name that you choose to give the
parameter. It is advisable that you give your parameters names that make it easy for the
users and implementors of your rule to figure out what role the particular parameter plays
in the rule. Our convention is to use names that begin with a lower−case letter for
parameters.

The list of parameters is separated by commas:

 Type−of−thing Name−of−thing, Type−of−thing Name−of−thing, ...

and so on until the last Type−of−thing Name−of−thing, which doesn't have a comma after
it. The whole list is enclosed in parentheses. You can list your parameters in any order.
Of course, some orders will naturally make more sense than others, and although the
choice is arbitrary, once chosen the order is fixed. This means that users and
implementors of the method will need to follow the order declared in the interface.

The getValue and increment rules of Counting don't have any parameters, i.e., they don't
need any information to begin operation. Their parameter lists are empty: ().
StringTransformer's transform rule needs one parameter, a String. We can call that String
anything we want to. For example, transform's parameter list might be:

(String whatToTransform)

136 Chapter 4 Specifying Behavior: Interfaces

A more complex AlarmedCounting interface might be mostly like our Counting interface
but in addition have a setAlarm method that takes two parameters, one an int indicating
the value at which the alarm should go off and the other a String that should be printed
out when the alarm is supposed to be sounded:

setAlarm(int whatValue, String alarmMessage)

When you are using a method, you need to pass the method a set of arguments that
match the parameter list. That is, between the parentheses after the name of the method
you're invoking, you need to have an expression whose type matches the type of the first
parameter, followed by a comma, followed by an expression whose type matches the type
of the second parameter, and so on, until you run out of parameters, e.g.:

increment()
transform(“a string to transform”)
setAlarm(1000, “capacity exceeded”)

4.2.3 Return Type

The rule also needs to specify what its users can expect to get back. In many cases, the
rule returns a value. The return type is then the type of the value returned. In some cases,
the rule does not return a value. (The increment method is an example of such a rule: it
changes the value stored inside the Counting object, but doesn't give anything back to the
entity that invoked it.) The return type of such a rule is a special Java keyword: void.
The only purpose for void is as the return type of rules that don't return a value. The
Counting interface's increment method presumably doesn't return anything, so its return
type would be void. The return type of the getValue method is presumably int.

When you use a method, you may or may not want to do something with the value
returned. The return type of the method signature tells you what type of thing you can
expect to get back, e.g., so that you can declare an appropriate name to store the result:

int counterValue = myCounting.getValue();

where myCounting is something that implements the Counting interface, i.e., satisfies the
Counting contract (and therefore has an int−returning getValue method). After this
statement, counterValue is a name that refers to whatever int myCounting's getValue
method returned.

4.2.4 Putting It All Together: Abstract Method Declaration
Syntax

Now you know about all of the components of a method signature. All you need to know
is how to put them together. The Type−of−thing Name−of−thing rule from Chapter 3,
Things, Types and Names, comes into play here as well. The type of a method is its return
type, so a method specification is:

Chapter 4 Specifying Behavior: Interfaces 137

returnType ruleName(paramType1 paramName1, ... paramTypeN paramNameN);

For example,

int getValue();

or

void increment();

Note that these declarations end with a semi−colon (;). This means that the method
signature is being used here as a specification — a contract. It doesn't say anything about
how the method — say increment — ought to work. That is, it doesn't even have a space
for the rule body, just the rule specification.

This form — method signature followed by a semi−colon — is called an abstract
method. There is even a Java keyword — abstract — to describe such methods. It is
OK, if sometimes redundant, to say

abstract void increment();

instead of the form given above. This is different from the use of a method signature
together with its body to define behavior (i.e., in a class declaration). We will see how to
use method signatures in the declaration of classes in Chapter 7, Building New Things:
Classes and Objects.

Since interfaces always specify only method signatures, interface method declarations are
always abstract. If you don't say so explicitly, Java will still act like the word
abstract is there. However, if your method definition does not end with a semi−colon,
your Java interface will not compile.

4.2.5 What a Signature Doesn't Say

The properties of a method that are documented by its signature are its name, its
parameters, and its return type.

[Footnote: In addition, method signatures may include visibility and other modifiers and
any exceptions that the method may throw.]

That leaves a whole lot open.

For example, for each parameter:

 What is that parameter intended to represent?•

 What relationships, if any, are expected to exist among the parameters?•

138 Chapter 4 Specifying Behavior: Interfaces

 Are there any restrictions on the legal values for a particular parameter?•

 Will the object represented by a particular parameter be modified during the
execution of the method?

•

For the return type:

 What is the relationship of the returned object to the parameters (or to anything
else)?

•

 What may you do with the object returned? What may you not do?•

Other questions not included in the method signature:

 What preconditions must be satisfied before you invoke this method?•

 What expectations should you have after the method returns?•

 How long can the method be expected to take?•

 What other timing properties might be important?•

 What else can or cannot happen while this method is executing?•

Not all of these questions are relevant to every method. For example, the precise amount
of time taken by the Counting object's getValue method is probably not important; it is
important that it return reasonably quickly, so that the value returned will reflect the state
at the time that the request was made. However, it is important to recognize that these and
other questions are not answered by your method signatures alone, so you must be careful
to document your assumptions using Java comments.

Chapter 4 Specifying Behavior: Interfaces 139

Style Sidebar

Method Documentation

Documentation for a method should always include the following items:

 Why would you want to use this method? What does it do? When is it
appropriate (or not appropriate) to use this method? Are there other methods
that should be used instead (or in addition)? Are there any other “hidden
assumptions” made by this method?

•

 What does each parameter represent? Is it information supplied by the caller
to the method? Is it modified during the execution of the method? What
additional assumptions does the method make about these parameters?

•

 What does the return value of the method represent? How is it related to the
method's arguments or other Things in the environment? What additional
assumptions may be made about this return value?

•

 What else might be affected by the execution of this method? Is something
printed out? Is another (non−parameter) value modified when it is run?
These non−parameter non−return effects are called side effects.

•

In addition, if there are other assumptions made by the method — such as how long
it can take to run or what else can (or cannot) happen at the same time — these
should be included in the method's documentation.

Java provides additional support for some of these items in its Javadoc utilities. See
the appendix on Javadoc for details.

4.3 Interface Declaration

Now that we know all about Java method signatures, it is very easy to declare a Java
interface. A Java interface is simply a collection of method signatures.

4.3.1 Syntax

A Java interface is typically declared in its very own file. The file and the interfaces
generally have the same name, except that the file name ends with .java. (For example,
the Counting interface would be declared in a file called Counting.java.)

Like most other declarations, an interface follows the Type−of−thing Name−of−thing

140 Chapter 4 Specifying Behavior: Interfaces

rule. The type−of−thing is, in this case, interface. The name is whatever name you're
giving the interface, if you're declaring it:

interface Counting

Now comes an interface body: an open−brace followed by a set of method signatures
followed by a close−brace. Note that it doesn't matter in which order the two methods are
declared; the two possible orders are equivalent. The whole thing (including the
interface Counting part) looks like this:

interface Counting {
 abstract void increment();
 abstract int getValue();
}

That's all there is to it.

Question: In this definition of Counting, the word abstract appears twice. In the
previous definition, above, it doesn't appear at all. Explain.

In fact, that was so easy, let's try another interface. This one is Resettable, and it is a very
simple interface. (Good interfaces often are.) Resettable has a single method:

interface Resettable {
 void reset();
}

This interface is fine, but it could do with a little bit of documentation. After all, there are
many things that an interface doesn't specify. Question: Can you identify some things
that should be included in Resettable's documentation?

For the precise specification of what may be included in an interface definition, in what
order, and under what circumstances, see the Java Chart on Interfaces.

4.3.2 Method Footprints and Unique Names

It might seem that each method in an interface would have a unique name. However, it
turns out that this isn't the case — at least, not exactly. Instead of a unique name, each
method in an interface (or class) definition must have a unique footprint. The method's
footprint consists of its name plus its ordered list of parameter types. Only the ordered list
of parameter types counts; the return type of the method, and the names given to the
parameters, are not relevant to its footprint.

Chapter 4 Specifying Behavior: Interfaces 141

For example, a reset rule with no parameters (an empty parameter list, ()) has a different
footprint from a

reset(int newValue)

rule (with the parameter list (int)), and both are different from

reset(String resetMessage)

(parameter list (String)). Only the parameter type matters, though, not the parameter
names:

reset(String resetMessage)

is the same as

reset(String whatToSay)

As long as two methods have different footprints, they can share the same name. This is
very common and even has its own name: overloading. Overloading allows an object to
have two (or more) similar methods that do slightly different things. For example, there
are two very similar mathematical rounding methods. One has the signature:

int round(float f);

while the other has the signature:

long round(double d);

The Math object has both of these methods, and if you pass Math.round a float, you
get back an int, while if you pass it a double, you get back a long. This is very
convenient — in both cases, a floating point number is converted to an integer, but in
either case the more appropriate size is used.

An alternate kind of overloading might happen if our hypothetical AlarmedCounting
interface had, in addition to its

void setAlarm(int whatValue, String alarmMessage)

method, a second method that just allowed you to specify the alarm message, without
changing the value for which it was set:

void setAlarm(String alarmMessage)

If you called

yourAlarm.setAlarm(1000, “Capacity reached”)

142 Chapter 4 Specifying Behavior: Interfaces

you'd set the alarm message to trigger at 1000, printing the message “Capacity reached,”
while

yourAlarm.setAlarm(“Oops, all full”)

might then be used to change the warning to be issued when the AlarmedCounting
reaches capacity.

Overloading method names is the choice of the interface builder. The interface user
simply makes use of the interface as it is given.

4.3.3 Interfaces are Types: Behavior Promises

Now that we have these interfaces, what good do they do? Interfaces are kinds of Things:
they are Java types.

In Java, every interface name is automatically a type name. That is, when you are
declaring a (label) name, you can declare it suitable for labeling things that implement a
specific interface. In Chapter 7, Building New Things: Classes and Objects, we will see
how to declare Java classes and how to indicate what interface(s) the class implements.

So, for example, the declared type of myCounting, above, was Counting:

Counting myCounting;

In this example, myCounting is declared to be of type Counting, i.e., something that
satisfies the Counting contract (interface) that we declared in the preceding sections. For
example, we might have an interface called Game that includes a getScoreCounter
method that returns a Counting:

interface Game {
 Counting getScoreCounter();

// maybe some other method signatures....
}

If theWorldCupFinal is a Game, then we might say

Counting myCounting = theWorldCupFinal.getScoreCounter();

In this case, we don't know anything more about the type of myCounting; we just know
that it is a ClassCounting. Often, as users of other people's code, interfaces are the only
types we need to know about.

Chapter 4 Specifying Behavior: Interfaces 143

4.3.4 Interfaces are Not Implementations

We have seen that an interface can be used as the type of an object. You can use names
associated with that type to label the object. You can pass objects satisfying that interface
to methods whose parameter types are that interface type, and you can return objects
satisfying that interface from a method whose return type is that interface. The Counting
in the previous paragraph was an example of the power of interfaces.

However, there are certain things that you cannot do with an interface.

Of course, when we're manipulating that Counting object, we don't know anything about
how it works inside. We don't know, for example, whether it has a touchdown part and a
field goal part, or is represented in decimal or in binary, or is likely to keep going up
while we're thinking about it (since players might keep scoring). To figure this out, we'd
need to know more than just the interface — the contract — that it satisfies; we'd need to
know how it is implemented.

Interfaces are about contracts, promises. They don't, for example, tell you how to create
objects that satisfy those promises. In the next several chapters, we'll learn about building
implementations that satisfy these promises and about creating brand new objects that
meet these specifications. To do that will require additional machinery beyond the
contract/promise of an interface.

144 Chapter 4 Specifying Behavior: Interfaces

Style Sidebar

Interface Documentation

An interface should be properly documented, typically using a multi−line or
Javadoc comment immediately preceding its declaration.

Documentation for an interface should include the following information:

 What kind of thing does this interface represent? Why would you want to
use an object of this kind? What could it do for you? What could you do
with it?

•

 What kinds of assumptions or conditions does this kind of object need to do
its job? Are there any special objects that it might need to have around or to
work with?

•

 What services does this kind of object provide, and how do you use them?
These questions are typically answered by the individual methods, but a
brief overview of what methods the interface provides is always useful. It is
may also be useful for the interface to document which method(s) to use
when, especially when multiple similar methods exist.

•

The interface's documentation should make it easy for a potential user to find the
method(s) the user wants. It should also make it possible for someone seeking to
implement this interface to determine whether the user has met the intent as well as
the formal specification of the interface. If I am building a stopwatch, do I want to
subscribe to the Clock interface?

Remember that an interface declaration is largely about what, not how. It specifies
contracts and promises, not mechanism.

Java provides additional support for some of these items in its Javadoc utilities. See
the appendix on Javadoc for details.

Chapter 4 Specifying Behavior: Interfaces 145

Chapter Summary

 An interface is a contract that a particular kind of object promises to keep.•

 Java interfaces are Java types.•

 Every (public) interface must be declared in a Java file with the same name as the
interface.

•

 Java interfaces contain method signatures.•

 A method signature specifies a method's name, parameter types, and return type.
It does not say anything about how the method actually works.

•

 A method signature is also called an abstract method.•

 One interface may have multiple methods with the same name, as long as they
have different ordered lists of parameter types. Method name plus ordered
parameter type list is called the method's footprint. Having two methods with the
same name but different footprints is called overloading.

•

 An interface does not contain enough information to create a new object, though
it can be used as a type for an existing object (that implements the interface's
promises).

•

 Many important properties of a method specification or interface are not
specified by the method or interface declaration. Good documentation describes
these additional assumptions.

•

146 Chapter 4 Specifying Behavior: Interfaces

Exercises

See the text for questions marked Question:. Also:

 StringTransformer has a transform method. Declare an interface, Transformer,
that contains this single method specification, so that StringTransformer might be
an implementation of this interface.

1.

 A Clock is an object that needs a method to read the time (say, getTime) and one
to set the time (say setTime). Assuming that you have a type Time already, write
the interface for a Clock.

2.

 Extend the interface of Clock (from the previous exercise) to include a setAlarm
method that should specify the Time at which the alarm should go off.

3.

 Extend the Clock interface further so that there is a second setAlarm method that
takes a Time and a boolean specifying whether the alarm should be turned on.

4.

 Write the interface AlarmedCounting.5.

 Consider the following interface:

interface Game {

 /* returns the Counting that keeps track
 of the team's score */
 Counting getScoreCounter(Team team);

 /* returns the Counting that keeps track
 of how many fouls each player has committed */
 Counting getFoulCounter(Team team, int playerNumber);

 /* returns the AlarmedCounting that keeps track
 of how much time has passed in the period so far */
 AlarmedCounting getTimeCounter();

 /* returns the length of a period */
 int getPeriodLength();
}

Assume that theWorldCup is a particular Game, according to this interface.

 Write a type declaration for the name theWorldCup. Don't worry about
where its value comes from.

a.

6.

Chapter 4 Specifying Behavior: Interfaces 147

 Write a type declaration suitable for holding the result of
theWorldCup.getTimeCounter().

b.

 Write an expression that returns the object that counts the fouls of player
5 on Team philadelphiaFlyers .

c.

 Write an expression that returns the current score of Team
philadelphiaFlyers in theWorldCup.

d.

 Write a method invocation that sets up theWorldCup (and its internal
representation) so that it will print “Period over!” when the elapsed time
reaches the length of the period.

e.

148 Chapter 4 Specifying Behavior: Interfaces

Chapter 5

 Expressions:
Doing Things with Things

Chapter Overview

 How do I use the Things I have to get new (or other) Things?•

This chapter and the next introduce the mechanics of executable code, the building blocks
for individual sequences of instruction−following. The previous chapter's Things each
come with a Type, which specifies how that Thing can interact. An expression is a piece
of code that can be evaluated to yield a value and a type.

Simple expressions include literals — Things that Java literally understands as you write
them — and names, which stand in for the Things to which they refer. More complex
expressions are formed by combining other Things according to their types, or promised
interactions.

To understand a complex expression, you must understand its parts (a basic form of
“what goes inside”) and how they are combined (a basic “how they interact”).
Sometimes, you have to understand this without knowing all of the details of what's
inside.

Sidebars in this chapter cover details of various Java operators, including casts and
coercion rules. In addition, supplementary reference charts are provided outlining the
syntax and semantics of Java expressions.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To understand that an expression is a piece of Java code with a type and a value.1.

 To become familiar with the rules of evaluation for basic Java expressions.2.

 To learn how to understand complex expressions as combinations of simpler
expressions.

3.

 To learn how to understand complex expressions as combinations4.

 To be able to evaluate both simple and complex expressions.5.

5.1 Simple Expressions

An expression is the simplest piece of Java code. An expression is a Thing, so it has both
a value and a type. An instruction−follower — an execution of Java code — evaluates
an expression to obtain its value, which will always be of the expression's type. There are
many kinds of expressions, and each has its own rules of evaluation that determine what
it means for an instruction−follower to evaluate that expression. Legitimate Java
expressions include the following:

2 + 2
“Hi, there”
this.out.writeOutput(this.in.readInput())

The last of these is an expression whose evaluation involves inter−object (and
inter−entity) communication.

5.1.1 Literals

The very simplest Java expression is a literal: an expression whose value is interpreted
literally, such as:

25
32e−65
“How about that?”

Java literals include the various kinds of numbers, characters, Strings, and booleans. For
a more complete enumeration of literal expressions and rules regarding their syntax (i.e.,
how you write them), see the sidebar on Java Primitive Types in Chapter 3, Things,

150 Chapter 5 Expressions: Doing Things with Things

Types, and Names.

Every expression has a value and a type, obtained by evaluating the expression. The
value of a literal is its prima facie value, i.e., what it appears to be. The type of an
expression is the type of its value. Integer literals are always of type int unless an
explicit type suffix (l, s, or b) is included in the literal. Non−integral numeric literals are
always of type double unless explicitly specified to be of type float (using the f
suffix).

5.1.2 Names

Names are also Java expressions. A name is a legitimate expression only once it has been
declared, i.e., within its scope.

[Footnote: The area of text within which a name is legal is called its scope. The scope of
a variable — a name with no special properties beyond being a name — begins at its
declaration and extends to the end of the enclosing block. (See the discussion of blocks in
Chapter 6, Statements and Rules.) Later, we will see three other kinds of names: classes,
fields and parameters. Class names have scope throughout a program or package; they
may be used anywhere. Field names have scope anywhere in their enclosing class,
including textually prior to their declaration. Parameter names have scope throughout
their method bodies only.]

The value of that name is the value currently associated with it — i.e., the setting of the
dial if it is a dial name, or labeled by it if it is a label name. The type of a name
expression is always the type associated with that name at the time of its declaration.

[Footnote: Note that the type of a name expression is the declared type of the name rather
than the type of the value associated with the name. That is, even where there is
disagreement between the declared type of a name and its value, the type of a name
expression is always its declared type.]

For example, if we are within the scope of a declaration that says

int myFavoriteNumber = 4;

and nothing has occurred to change the value associated with (set by the dial called)
myFavoriteNumber, then the value of the expression

myFavoriteNumber

is 4 and its type is int. That is, the int 4 is the result of evaluating myFavoriteNumber.

Chapter 5 Expressions: Doing Things with Things 151

5.2 Method Invocation

Method invocation is the primary way in which one object asks another to do something.
It is the primary basis for inter−entity communication and interaction, because it is the
main way in which objects talk to one another.

We have seen in previous chapters that objects are able to perform certain services. These
service requests are called methods, and asking an object to do something is called
method invocation. In Java, a method invocation involves:

 An expression whose value is the object to whom the request is directed,
followed by

•

 A period (or “dot”), followed by•

 The name of the method to be invoked, followed by•

 Parentheses, within which any information needed by the method request must be
supplied.

•

An example method invocation might be:

“a test string”.toUpperCase()

This example consists of a String literal expression (“a test string”) and a request
to that object to perform its toUpperCase method. A String's toUpperCase method
doesn't require any additional information, so the parentheses are empty. (They can't be
omitted, though!) The value of a String's toUpperCase method is a new String that
resembles the old one, but contains no lower−case letters. So the value of this expression
is the same as the value of the literal expression “A TEST STRING”.

Another example of method invocation is:

Console.println(“Hello”)

This asks the object named by the name expression Console to print the line supplied to
it. It requires that a String — the line to be printed — be supplied inside the parentheses.
This “necessary information” is called an argument to the method.

What is the value of this method invocation expression?
Console.println(“Hello”) is a method invocation whose primary use, like that
of assignment, is for its side effect, not its value. We use this method to make something
appear on the user's screen. Good style dictates that we wouldn't use this expression
inside any other expression. It turns out that many methods have no real return values, so
(as we saw in the previous chapter) there's a special Java type for use on just such

152 Chapter 5 Expressions: Doing Things with Things

occasions. This type is called void. It is used only for method return types, and it means
that the method doesn't return anything.

The evaluation rule for a method invocation expression is as follows:

 Evaluate the object expression to determine whose method is to be invoked.1.

 Evaluate any argument subexpressions.2.

 Evaluate the method invocation by asking the object to perform the method using
the information provided as arguments.

3.

 The value of the expression is the value returned by the method invocation. The
type of the method invocation expression is the declared return type of the method
invoked.

4.

In order for step 3 to work, the object must know how to perform the method, i.e., it must
have instructions that can be followed in order to produce the return value needed in step
4. We have already seen how an interface can describe an object's commitment to provide
such behavior. We will see in the next chapters how this may be accomplished in detail.

From the perspective of the method invoker, however, the transition from step 3 to step 4
happens by magic (or by the good graces of the object whose method is invoked). The
object offers the service of providing a particular method requiring certain arguments and
returning a value of a particular type. For example, if we look at the documentation (or
code) for String, we will see that it has a toUpperCase method that requires no arguments
and returns something of type String. The println method of Console requires a String as
an argument, and println's return type is void. We will learn more about the methods
that objects provide in Chapter 7, Building New Things: Classes and Objects, and
Chapter 8, Designing with Objects.

5.3 Combining Expressions

Since expressions are things — with types and values — expressions can be combined to
build more complicated expressions. For example, the expression

“serendipitous”.toUpperCase()

has the type String and the same value as the literal “SERENDIPITOUS”. That is, you
can use it anywhere that you could use the expression “SERENDIPITOUS”. So, for
example, you could get an adverbial form of this adjective by using

“serendipitous”.toUpperCase() + “LY”

producing “SERENDIPITOUSLY”, or you could extract the word “REND” using

Chapter 5 Expressions: Doing Things with Things 153

“serendipitous”.toUpperCase().substring(2, 6)

In general, since every expression has a type, you can use the expression wherever a
value of that type would be appropriate. The exception to this rule about reuse of
expressions is that some expressions are constant — their value is fixed — while other
expressions are not. Some contexts require a constant expression. In these cases, you
cannot use a non−constant expression of the same type.

For example,

“to” + “get” + “her”

is a constant expression, but

str + “ether”

is (in general) not, even if str happens to have the value “tog”.

[Footnote: The expression str + “ether” would be constant if str were declared
final, though. Names declared to be final cannot be assigned new values.]

There are a few places where Java requires a constant value. These will be noted when
they arise.

The evaluation rule for a compound expression is essentially the same as the evaluation
rules for the expressions that make it up: Evaluate the subexpressions that make up this
expression, then combine the values of these subexpressions according to the evaluation
rule for this expression.

For example, when we evaluate

“serendipitous”.toUpperCase()

we are actually evaluating the simpler (literal) expression “serendipitous”, then
evaluating the method invocation expression involving “serendipitous”'s
toUpperCase method. Similarly, str + “ether” evaluates the (name) expression
str and the (literal) expression “ether”, and then combine these values using the rules
for + expressions, detailed below. In this case, str and “ether” are subexpressions of
str + “ether”.

There are two additional details: 1) Evaluating the subexpressions may itself involve
several evaluations, depending on how complex these expressions are, and 2) it may not
always be clear which operation should be performed first. (See Section 5.7,
Parenthetical Expressions and Precedence.)

154 Chapter 5 Expressions: Doing Things with Things

Method invocation, like other expressions, can be used to form increasingly complex
expressions. For example, we can combine two method invocations we used above to
cause the value of “A TEST STRING” to appear on the user's screen:

Console.println(“a test string”.toUpperCase())

In this case, the value of the toUpperCase invocation is used as an argument to println.
We can also cascade other kinds of expressions, such as

“This is ” + “a test string”.toUpperCase()

or

Console.readln().toUpperCase()

5.4 Assignments and Side−Effecting Expressions

Another kind of operator is assignment. We have already seen some simple assignments
— including some that were mixed with declarations and buried inside definitions. An
assignment is actually a kind of expression. Its first operand — the expression on the
left−hand side — must be a name or another expression that can refer to a dial or a label.
In this context, and in this context only, the name expression refers to the dial or
label, not to the particular value currently associated with the name.

Like all expressions, every assignment has a type and returns a value. The type of an
assignment is the type of its left−hand side. The value of an assignment expression is the
value assigned to the left−hand side. For example, the type of the expression

myNumber = 4563129

is int, because the type of 4563129 is int, and the value is 4563129 for the same
reason.

Note that we must have declared myNumber before we get to this expression; and that
this expression is legitimate only if myNumber has type int, long, float, or
double. Note, also, that if myNumber were already declared, we wouldn't want to
declare it again. Every time that you declare a name, it creates a brand new dial or label
with that name.

Although assignments are expressions in Java, they are not generally used for the
resulting value. Instead, an assignment statement is generally used because it will cause
the dial or label on its left−hand side to be associated with a new value. This effect is not
a part of the value of the expression; instead, it happens “on the side” and is called a side
effect. Assignment statements are among the most common expressions used for their
side effects, but we will see several other expressions with important side effects in the
remainder of this chapter.

Chapter 5 Expressions: Doing Things with Things 155

Style Sidebar

Don't Embed Side−Effecting Expressions

When you use a side−effecting expression, it is best if this expression is not a
subexpression of any other expression. So, for example, while assignments — as
expressions — can be used inside other expressions, it is generally considered bad
style to do so. Embedding side−effecting expressions inside other expressions can
make the logic of your code very difficult to follow. Side effects are also important
and often difficult to catch. By highlighting the side−effecting expression by
making it the outermost expression, you are increasing the likelihood that it will be
read and understood.

5.5 Other Expressions That Use Objects

We have already seen method invocation, perhaps the most common object expression.
In this section, we cover three additional expressions that use objects: field access,
instance creation, and type membership. Each of these kinds of expressions will be
discussed further when we explore how objects are actually created, beginning in Chapter
7, Building New Things: Classes and Objects.

5.5.1 Fields

In addition to methods, objects sometimes have fields: data members that behave as
names. That is, fields are either dials or labels. Like methods, fields are also accessed
using the dot syntax, but without following parentheses. A field access expression is
essentially a name expression, though a more complex one than the simple names
described above. The value of a field access expression is, as for a simple name, the value
associated with the dial or label. So, for example, Math.PI is a double dial, belonging
to an object called Math, containing a value approximating a real number whose most
significant digits are 3.14159.

We can use field invocations in compound expressions, too. If myWindow is a Window
with a getSize method that returns a Dimension, then

myWindow.getSize().height

first asks myWindow to perform its getSize method, resulting in a particular Dimension
object, then asks the Dimension object for its height field. This compound expression is
the same as first creating a name for the Dimension and assigning it the result of the
method invocation:

Dimension mySize = myWindow.getSize();

156 Chapter 5 Expressions: Doing Things with Things

and then asking the newly named Dimension object called mySize for its height field.

Because field access expressions are actually name expressions, they also have special
behavior in the specific context of the target of an assignment statement. That is, you can
assign to a field access expression just as you would to a simple name, and the field
access expression behaves like the dial or label to which it refers. For example, if height
is an int dial owned by mySize, the expression

mySize.height = mySize.height / 2

halves the value contained in the height dial of mySize, which might shrink mySize
vertically by half.

5.5.2 Instance Creation

A second object−related expression is the instance−creation expression, used with a
class name to create a new object. The details of this expression type are covered in
Chapter 7, Building New Things: Classes and Objects; for now it is enough to recognize
it. An instance−creation expression has three parts: the keyword new, the class name,
and a (possibly empty) list of arguments, enclosed in parentheses. This description of
how to write an expression is called its syntax , and we can abbreviate the syntax of the
instance−creation expression as:

Syntax of an Instance−Creation Expression

new ClassName (argumentList)

The words in italics — ClassName and argumentList — are placeholders to indicate that
you need to supply the details. The rest of the expression — new and the parentheses —
are to be taken literally. For example,

new File (“myData”)

creates a new File object with external (outside of Java) name myData.

Like all other expressions, an instance−creation expression has a type — ClassName, the
kind of object created, in this case File — and a value — the new object created. The
instance−creation expression is typically used inside an assignment or method
invocation.

The rules of evaluation for instance−creation expressions are similar to the rules of
evaluation for method invocation. The return value is always a new instance of the type
(or class) whose instance−creation expression is invoked (in this case, File). The return

Chapter 5 Expressions: Doing Things with Things 157

type is always the type whose instance creation is invoked. Instance creation is a
side−effecting expression (since it creates a new object).

5.5.3 Type Membership

There is one last operator that is useable only with objects. This is an operator called
instanceof, which checks whether an object has (or can have) a certain type. It takes
two operands:

Syntax of an instanceof Expression

anObjectExpression instanceof ObjectTypeName

The first operand, which precedes the keyword instanceof, can be any expression
whose value is of any object (non−primitive) type. The second operand, which follows
the keyword instanceof, must be the name of an object type. As we shall see in the
next few chapters, this name may be the name of any class or any interface.

The instanceof operator is used to determine whether it is appropriate to treat its first
operand according to the rules of the type named by its second operand. (For example, is
it appropriate to “cast” the object to this type, as described in the next section?) The value
of an instanceof expression is a boolean: true if it is appropriate to treat the
object according to this type, false otherwise. So, for example,

“a String” instanceof String

has the value true (because “a String” is a (literal) instance of the type String),
while

new Object() instanceof String

has the value false (because the new Object created by the instance−creation
expression new Object() is not a String).

5.6 Complex Expressions on Primitive Types:
Operations

Perhaps the most common kind of expression on primitive types is made up of two
expressions combined with an operator. Java operators are described in the sidebar on
Java Operators. They include most of the common arithmetic operators as well as
facilities for comparisons, logical operations, and other useful functions. Of special note
is + for String concatenation (as well as for ordinary addition).

158 Chapter 5 Expressions: Doing Things with Things

Each operation takes arguments of specified types and produces a result with a particular
value and type. For example, if x and y are both of type int, so is x + y. The +
operator can be used to combine any two numeric types. The two things combined with
the operator are called the operands. In the expression x + y, the + is the operator and
x and y are the operands. Some operators take two operands. These are called binary
operators. Other operators take only one operand; these are the unary operators. One
operator — ?: — takes three operands.

Java Operators

Java operators include:

+ − * / | & ^ % << >> >>>
+= −= *= /= |= &= ^= %= <<= >>= >>>=
< > <= >= == !=
! && ||
++ −−
= ?:

The arithmetic operators and bitwise−logical operators in the first row are,
respectively, addition, subtraction, multiplication, division, bitwise or, bitwise and,
bitwise negation, modulus, left−shift, sign−extended right−shift, and zero−extended
right−shift. The + operator is also used for String concatenation when at least one
of its arguments is a String. The − operator can also be used as unary
(one−argument) negation.

The operators in the second row are operator−assignment operators that combine
their correlate in the first row with an assignment operation. Thus

x += 2

has the same effect as

x = x + 2

The difference is that the left−hand side of the combined operator is evaluated only
once. The value of an operator−assignment expression is the new value of the
left−hand side; the type is the type of the left−hand side. All assignment
expressions modify the name that is their left−hand side.

The third row above lists the six comparison operators, each of which returns a
boolean. The final comparison is not−equal.

The fourth row lists the logical operators: logical negation, logical conjunction

Chapter 5 Expressions: Doing Things with Things 159

(and), and logical disjunction (or). Each of these takes boolean arguments —
one in the case of negation, two in the case of conjunction and disjunction — and
returns a boolean.

The operators in the fifth row are autoincrement and autodecrement. These can be
used as either prefix or postfix operators. Both ++x and x++ modify x, leaving it
incremented. However, ++x returns the incremented value of x, while x++
returns the unincremented value. The −− operator works similarly.

The final two operators are simple assignment (which works like the compound
assignments, above) and the ternary (three−operand) expression conditional:

x > y ? a : b

evaluates to a if x > y , and to b otherwise. (You can use any boolean−valued
expression where I used x > y , and any expressions where I used a and b .)

5.6.1 Arithmetic Operation Expressions

The operator + is an example of a kind of operator called an arithmetic operator. The
rules for evaluation of the binary arithmetic operators +, −, *, /, and % are simple:
compute the appropriate mathematical function (addition, subtraction, multiplication,
division, and modulus, respectively), preserving the types of the operands. As explained
in the sidebar on Arithmetic Expressions, an expression of the form

type operator type

has type type for all of the basic arithmetic operations on most of the primitive types.
That is, for these arithmetic operators, if the types of the two operands are the same, the
result — the value of the complete expression — will generally also be of that type. For
example, the expressions

3 + 7
2.0 * 5.6
5 / 2

evaluate to the int 10, the double 11.2, and — perhaps surprisingly — the int 2 (not
2.5 or 2.0), respectively.

Sometimes, an operator needs to treat one of its operands as though it were of a different
type. For example, if you try to add 7.4 (a double) and 3 (an int) Java will
automatically treat the int3 as though it were the equivalent double, 3.0. This way,
Java can add the two numbers using rules for adding two numbers of the same type. This
kind of treating numbers — or other things — as though they had different type is called

160 Chapter 5 Expressions: Doing Things with Things

coercion. Coercion does not actually change the thing, it simply provides a different
version (with a different type). For dial types, this version is essentially a copy. For label
types, it is another “view” of the same object. Coercion is described more fully in the
sidebar on Coercion and Casting.

Other arithmetic operators work in much the same way as the + operator. Additional
information on arithmetic expressions is summarized in the sidebar Arithmetic
Expressions. Note in particular that / (the division operator) obeys the same
Type−Operator−Type is Type rule. This means that 7 / 2 has type int (and the value
 3). If you want a more precise answer — 3.5 — you can make sure that at least one
operand is a floating point number: 7.0 / 2 has type double, as does 7 / 2.0
and (best style) 7.0 / 2.0.

In addition to the binary (two−argument) arithmetic operators described above, Java
includes a unary minus operator that takes one argument and negates it. So −5 is a
(literal) int, while − 5 is an arithmetic expression that has value −5 and type int.
(Subtle, no?)

Chapter 5 Expressions: Doing Things with Things 161

Arithmetic Expressions

Arithmetic expressions include the binary operators for addition (+), subtraction
(−), multiplication (*), division (/), and the modulus or remainder operation (%). In
addition, there are two unary arithmetic operators, + and −.

Arithmetic operations work only with values of type int, long, float, or
double. When a (unary or binary) arithmetic expression is invoked with a value of
type short, byte, or char, Java automatically widens that operand to int (or to
a wider type if the other operand so requires). For further details on widening, see
the sidebar on Coercion and Casting.

When the operands of a binary arithmetic expression are of the same type, the
complete expression also has that type, except that no binary arithmetic expression
has type short, byte, or char. This is because operands of these types are
automatically widened.

When the operands are of different types, Java automatically widens one to the
other.

The values of the expressions involving the binary operators +, −, *, and / are the
sum, difference, product, and quotient of their (possibly widened) operands,
respectively.

The value of x % y is the (appropriately widened) remainder when x is divided
by y.

The value of a unary − expression is the additive inverse of its (possibly widened)
operand; a unary + expression has the value of its (possibly widened) operand.

5.6.2 Explicit Cast Expressions

If the numbers you wish to divide — or otherwise combine — are not literals, you can
still change their types using an explicit cast expression (as described in the sidebar on
Coercion and Casting). Like coercion, this gives you a view of the thing cast as a
different type. It is accomplished by putting the name of the type that you wish the thing
to have in parentheses before the (expression representing the) thing. For example, if
myInt is an int−sized dial showing the value 3, then

(long) myInt

is a view of 3 as a long and

162 Chapter 5 Expressions: Doing Things with Things

(double) myInt

is an expression with the same type and value as the literal expression 3.0. Throughout
this, myInt itself remains an int−sized dial showing the value 3.

Evaluating a cast expression yields the value of the cast operand (in this case, myInt), but
with the type of the explicit cast (in the first example above, long). A cast expression
does not alter its operand in any way; it simply yields a new view of an existing value
with a different type. Some casts are straightforward and appropriate; some risk losing
information; and most are simply not allowed. For example, in Java you cannot cast an
int to boolean. Casts are also allowed from one object type to another under certain
circumstances. See the sidebar on Coercion and Casting for further details.

Coercion and Casting

Sometimes things don't have the types we might wish. Coercion is the process of
viewing a thing as though it had a different type. Coercion does not change the
thing itself; it merely provides a different view.

Java only makes certain automatic — implicit — coercions. For example, Java
knows how to make byte into short; short into int; int into long; long
into float; and float into double. This works because each type spans at least
the magnitude range of the ones appearing before it in the list. (A few of these
coercions — such as long to float — may lose precision.) These coercions —
which are, in general, information−preserving — are called widening. We will see
in Chapter 7, Building New Things: Objects and Classes, that there are also
widening coercions on label (reference) types.

Coercions in the opposite direction are called narrowing. Java does not generally
perform narrowing coercions automatically. For example, Java cannot automatically
convert an arbitrary int to a short, because the int might contain too much
information to fit into a short. The number 60000 is a perfectly legitimate value
for an int, but not for a short. There is no mapping from ints to shorts that
accurately captures the magnitude information in each possible int. A coercion of
this kind — such as int to short — which may not preserve all of the
information in the original object, is called lossy.

[Footnote: There is one instance in which Java performs a narrowing but non−lossy
coercion automatically. This is in the case of a sufficiently small int constant
assigned to a narrower integer type. This allows literals — which would otherwise
have type int — to be assigned to names with byte and short type, e.g.:

short smallNumber = 32;

Chapter 5 Expressions: Doing Things with Things 163

]

Sometimes, you need to change the type of an object when Java will not do so
automatically. This is accomplished by means of an explicit cast expression. The
syntax of a cast expression is:

Syntax of a cast Expression

(type−name) expression−to−be−cast

For example, if myInt is a name of type int with value 7, for example by

int myInt = 7;

then

(long) myInt

is an expression with type long and value 7. (Note that myInt still has type int.
Casting, like implicit coercion, does not actually modify the castee.)

Explicit coercion allows both widening and narrowing coercions: you can cast an
int to long, as in the example above, or to short — a cast that may lose
information. A typical example of a lossy cast is to convert a double to an int.
For example, if x and y are doubles,

(int) ((x + y) / 2.0)

evaluates to their (truncated) integer average. Certain casts may be illegal and will
cause (compile−time or run−time) errors or exceptions.

5.6.3 Comparator Expressions

Not all operators are arithmetic. There is a set of boolean−yielding operators, sometimes
called comparators, that operate on numeric types. These include <, <=, ==, etc. (See the
sidebar on Java Operators for a complete list.) These take two numbers, coerce
appropriately, and then return a boolean indicating whether the relationship holds of
the two numbers in the order specified. For example,

6 > 3.0

164 Chapter 5 Expressions: Doing Things with Things

is true, but

5 <= 3

is false.

Beware:== tests for equality; = is the assignment operator.

Equality testing — the operators == and != — are not restricted to numeric types. For
any type, these operators combine two expressions of the same type, returning true only
if both operands are the same. When are two operands the same?

 For primitive types, values are the same whenever they “look” the same, i.e.,
when their values are indistinguishable. For example, two “different” copies of
the (int−sized) number 3 are, for purposes of testing for equality, the same.

[Footnote: However, this does not extend to 3 and 3.0 and 3.0f, each of which is a
different thing. This is because each of these has a different type. Attempting to
compare two operands of different type yields a compile−time error.]

•

 For object types, values are the same exactly when the two expressions refer to
the same object. It is not sufficient for two objects to look alike (as in the case of
identical twins); they must actually be the same object, so that modifications to
one will necessarily be reflected in the other.

•

Consider, for example, identical twins X and Y. Although they may look exactly the
same, they are still two different people. If one gets a haircut, the other's hair doesn't
automatically get shorter. If one takes a bath, the other doesn't get clean. Thus they are
different: X == Y is false.

The int 3, on the other hand, has no internal structure that can be changed (the way that
one twin's hair can be cut). If you change 3, you don't have 3 any more. If dial name A
and dial name B each are of type int and each have 3 as their value, then X == Y is
true.

Evaluating one of these expressions is much like evaluating an arithmetic expression. The
values of the operands are compared using a rule specific to the operator — such as > or
<= — and the resulting boolean value is the value of the expression.

5.6.4 Logical Operator Expressions

Another set of operators combines booleans directly. These include && (conjunction, or
“and”) and || (disjunction, or “or”). For example, the expression

true || false

Chapter 5 Expressions: Doing Things with Things 165

is true. While this is not very interesting by itself, these boolean operators can be used
with names (of type boolean, of course) or in complex expressions to great effect. For
example,

rainy || snowy

might be a reasonable way to express bad weather; it will (presumably) have the value
true exactly when it is precipitating. There is also a unary boolean negation operator
denoted ! (exclamation point). The Java fragment

! (rainy || snowy || overcast)

might be a good expression for sunshine.

The rule for evaluating negation is simply to invert the boolean value of its operand. The
rules for evaluating conjunction and disjunction are a bit more complex. First, the left
operand is evaluated. If the value of the expression can be determined at this point (i.e., if
the first operand to a conjunction is false or the first operand of a disjunction is true),
evaluation terminates with this value. Otherwise, the second operand is evaluated and the
resulting value computed. The type of each of these expressions is boolean.

These odd−seeming rules are actually quite useful. You can exploit them to insert tests.
For example, you might want to compute whether

(x / y) > z

but it might be the case that y is 0. By testing whether

(y == 0) || ((x / y) > z)

you can eliminate the potential divide−by−zero error. (If y is 0, the first operand to the
disjunction — (y == 0) — will be true, so evaluation will stop and the value of the
whole will be true.) A comparable formula can be written to return false if either y is
0 or (x / y) > z.

5.7 Parenthetical Expressions and Precedence

A parenthetical expression is simply an expression wrapped in a pair of parentheses. The
value of a parenthetical expression is the value of its content expression, i.e., the value of
the expression between the opening parenthesis and the closing parenthesis. The type of a
parenthetical expression is the same as the type of the expression between the
parentheses.

Parenthetical expressions are extremely useful when combining expressions. For
example, suppose that the name x has the value 6 and consider the expression:

166 Chapter 5 Expressions: Doing Things with Things

“I have ” + x + 3 + “ monkeys”

The human writing this expression might have meant

“I have ” + (x + 3) + “ monkeys”

(which evaluates to “I have 9 monkeys”), but in Java this expression is equivalent to

((“I have ” + x) + 3) + “ monkeys”

(which evaluates to “I have 63 monkeys”). Isolating x + 3 as a separate expression
makes the + in x + 3 behave like addition, not String concatenation.

Note that, in giving the evaluation rules for expressions, white space doesn't matter:

x >= 2 + 3

is identical to

x >= 2 + 3

but punctuation does matter. For example,

2 + 3 * 2

doesn't have the same value as 5 * 2 —

2 + 3 * 2

is 8. We can use parentheses to fix this, though:

(2 + 3) * 2

is 10 again. In this case, parentheses change the order of evaluation of subexpressions
(or, equivalently, how the expression is divided into subexpressions.) In the case of

2 + 3 * 2

if you evaluate the + first, then the * , you get 5 * 2, while if you evaluate the * first,
you get 2 + 6.

How do you know which way an expression will be evaluated? In these situations, where
one order of operation would produce a different answer from another, we fall back on
the rules of precedence of expression evaluation. In Java, just as in traditional
mathematics, * and / take precedence over + and −, so

2 + 3 * 2

Chapter 5 Expressions: Doing Things with Things 167

is really is 8. (Another way of saying this is that the * is more powerful than the +, so the
* grabs the 3 and combines it with the 2 before the + has a chance to do anything. This is
what we mean when we say that * has higher precedence than +: it claims its operands
first.)

A full listing of the order of precedence in Java is included in the sidebar on Java
Operator Precedence. Parentheses have higher precedence than anything else, so it is
always a good idea to use parentheses liberally to punctuate your expressions. This makes
it far easier for someone to read your code as well.

Java Operator Precedence

Expressions with multiple subexpressions are evaluated according to the rules of
Java precedence. The following chart gives the rules for order of evaluation of Java
expressions, with the expression types listed higher having higher priority, i.e.,
being evaluated first.

Operators in the table below are grouped by equivalent precedence. Within these
groups, order of evaluation of an expression is from left to right in that expression.

Since an expression cannot be evaluated until its subexpressions have been,
precedence determines the extent of operands to each operator, i.e., what the
operand subexpressions of an operator are.

++ −− + − ~ ! explicit cast

* / %

+ −

<< >> >>>

< <= > >= instanceof

== !=

&

^

|

&&

||

?:

= and all compound assignments

168 Chapter 5 Expressions: Doing Things with Things

Other Assignment Operators

Compound Assignment

Java has several variants on the simple assignment statement. If we have already
declared total as an int, we can say:

total = 6

or

total = total + 1

The second expression uses the fact that total + 1 is an expression with type
int and value one greater than total to form an expression whose second
operand is an arithmetic expression. This last expression — adding to a name — is
pretty common, and so it has a convenient shorthand:

total += 1

The+= operator is one of a class of compound assignment operators. It works by
computing the value of its first operand, then adding its second operand to that
value and assigning the result to the name represented by the first operand. In other
words, the expression above is exactly the same as saying:

total = total + 1

This kind of compound assignment can be used with any number — or other
appropriate expression — as the second operand, of course. There are also other
compound assignment operators in Java, including−= , *= , /= , and %= . Like the
+ operator, the += operator works for both numeric addition and String
concatenation. Like their longhand forms — the simple assignment equivalents —
these expressions have type and value of their left−hand side (after the assignment).

AutoIncrement and AutoDecrement

There is another family of side−effecting operators that are related to assignment.
These operators are autoincrement and autodecrement. The postfix autoincrement
expression:

total++

Chapter 5 Expressions: Doing Things with Things 169

is similar to total = total + 1 (or total += 1), but it has the value of
total before the assignment. The prefix autoincrement expression:

++total

also adds one to total, but has the value of total after the assignment. (Remember:
++variable first increments, then produces a value; variable++ produces
the value first.) The two (prefix and postfix) autodecrement operators work
similarly.

170 Chapter 5 Expressions: Doing Things with Things

Chapter Summary

 Every expression has both a type and a value.•

 Simple expressions include literals and names.

 A literal has its apparent type and value.♦

 A name has its declared type and assigned value.♦

•

 Operator expressions combine or produce modifications of simpler expressions.

 Arithmetic operators compute mathematical functions; the type of an
arithmetic operation expression is typically the wider of its operand types.

♦

 Logical operators compute binary logical functions; the type of a logical
operation expression is boolean .

♦

 Explicit cast expressions have the type of the cast operation and the
same value as the cast operand.

♦

 None of the above expressions actually modifies any of its operands.
However, autoincrement, autodecrement, and the shift operators do
modify their operands.

♦

•

 Assignment expressions are generally used for their effects — modifying the
value associated with a (dial or label) name — but, as expressions, also have type
and value. The value of an assignment expression is the value assigned; the type
is the type of the value assigned.

•

 Several kinds of expressions operate on objects:

 A method invocation expression has the type and value returned by the
method. Methods may be side−effecting.

♦

 A field access expression is like an ordinary name expression: its type is
the field's declared type and its value is the field's current assigned value,
except in the context of assignment expressions.

♦

 A constructor expression's value is a brand new object whose type is the
type with which the constructor expression is invoked.

♦

•

Chapter 5 Expressions: Doing Things with Things 171

Exercises

 In Java, every expression has a type. Assume that the following declarations
apply:

int i, j, c;
double d;
short s;
long l;
float f;
boolean b;

For each expression below, if it is syntactically legal Java, indicate its type (not its
value). If it is not syntactically valid, indicate why.

 6a.
 24Lb.
 +3.5c.
 3.5fd.
 2e−16e.
 −25bf.
 ig.
 i + 3h.
 i + 3.0i.
 i + sj.
 l + dk.
 f + sl.
 i / 0m.
 4 * 3.2n.
 i = 0o.
 i == 0p.
 b = 0q.
 b == 0r.
 'c's.
 “An expression in double−quotes”t.
 “An expression in double−quotes” + “another one”u.
 “6” + 3v.
 !bw.
 !ix.
 b || truey.
 i += sz.
 s += iaa.
 i += fab.
 l = i = sac.
 i = l += sad.

1.

172 Chapter 5 Expressions: Doing Things with Things

 l++ae.
 (long) saf.
 sag.
 (short) lah.
 lai.

 Give three examples of expressions with side effects.2.

 What is the value of each of the following expressions? Which ones produce
errors in evaluation? You may wish to consult the sidebar on Java Operator
Precedence . Assume that the following definitions have already been made:

int i = 93;
boolean b = true;

 2.0 + 3.5 * 7a.
 (“top ” + “to ” + “bottom”).toUpperCase()b.
 “the answer is ” + 6 * 7c.
 4 + 6 + “ is ” + 10d.
 i > 0 && i < 100e.
 b = i < 0f.
 ! (i == 0) && 100 / ig.

3.

 Give examples of each of the following. Throughout, assume that x and b are
previously defined names for an int and boolean , respectively.

 An expression whose type is int and whose value is more than x.a.

 An expression whose type is boolean and whose value is true when x
is between 5 and 15.

b.

 An expression whose type is double and whose value is half of x's.c.

 An expression whose type is long and whose value is the remainder
when x is divided by 7.

d.

 An expression whose type is boolean and whose value is the opposite
of b's value.

e.

 An expression whose type is boolean and whose value is true exactly
when x is evenly divisible by 5.

f.

 An expression whose type is String and whose value is read from the
user's keyboard.

g.

4.

Chapter 5 Expressions: Doing Things with Things 173

174 Chapter 5 Expressions: Doing Things with Things

Chapter 6

 Statements and Rules

Chapter Overview

 How do I tell the computer how to do something?•

This chapter introduces statements, the simplest forms of complete executable
instructions. Statements are fragments of Java code that have neither value nor type;
instead, they have effects. Statements can be combined to form rules, or services that one
object can provide to another. Statements and rules form the backbone of the
peanut−butter and jelly model of programming.

Statements can be built out of expressions. However, unlike expressions, which have
both type and value, statements are used for their effect — to get something done.
Examples of this are asking a thing to do something or assigning a name to keep track of
a value. In addition to declarations, assignments, and method invocation, this chapter
introduces simple control flow statements. More advanced statement types are introduced
later in the book.

The chapter ends with a discussion of methods, the rules implementing behavior. Method
invocation provides the basis for virtually all inter−object interaction.

This chapter is supplemented by a reference chart on the syntax and semantics of Java
statements.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To appreciate the difference between evaluating an expression and executing a
statement.

1.

 To be able to read and understand basic statements including assignments,
method invocations, declarations, blocks, conditionals, and loops.

2.

 To learn how to combine statements to construct rules that implement method
behavior.

3.

6.1 Statements and Instruction−Followers

In the first chapter of this book, we saw that computations are made of communities of
interacting entities. Each of these entities may be a community of smaller entities, until
eventually an entity can be subdivided no more. At that point, an entity is a simple
instruction−follower that provides behavior — often in the form of ongoing services —
to the other members of its community. This chapter is about how those instructions
work. Towards the end of the chapter, we will begin to see how instructions can be
combined to form special sequences that articulate how service requests can be fulfilled.

In the previous chapter, we saw how to create Java expressions. An expression is a piece
of Java code with a value and a type. The process of producing the value from an
expression is called evaluating that expression. The purpose of evaluating an expression
is generally to produce its value.

In contrast, statements are all about their side effects. A statement is a piece of executable
Java code without either a type or a value. That is, a statement does something (changes
something, produces some visible behavior, etc.). It has an effect. It does not have a
value. A statement is executed (producing an effect), not evaluated (producing a value).

In order to evaluate an expression, you must evaluate its subexpressions, then use the
evaluation rule for that kind of expression to produce an appropriate value of an
appropriate type. If you understand the evaluation rules for each type of expression, you
understand how expressions work.

Understanding how to execute a statement is similar. A statement is not defined by a type
and a value (it doesn't have either!), but by its effects and by what happens next. That is,
statements do things; they change the values associated with names. And statements can
also cause you to skip around in the instructions that you are following. This is called

176 Chapter 6 Statements and Rules

flow of control: what instruction to follow next. Some of these control flow statements
involve conditions (if it's raining, do this) or loops (keep doing this until the light changes
color). And many statements involve either subexpressions—which must be
evaluated—or substatements—which must be executed in order to execute the
superstatement.

6.2 Simple Statements

Perhaps the simplest kind of statement is one built directly out of an expression, such as

 this.who = name;

or

 Console.println(“Hello”);

Note the trailing semicolon following the ends of these expressions. It is this semicolon
that converts these expressions into statements.

What kinds of expressions can be used to form statements? Only side−effecting
expressions. Many expressions are useful solely because of the value that they compute.
But a statement doesn't have a value; it has effects on state and control flow. So an
expression whose primary purpose is the value it produces doesn't make a very good
basis for a statement on its own.

[Footnote: These expressions may find use in other, more complex statements, though.]

In fact, it is not legal in Java to make an expression−semicolon statement out of a
non−side−effecting expression. (For example, x + 3; is not a legal statement.)

However, some expressions do more than just produce values when they are evaluated.
For example, an expression like x = 3 has the value 3 (and the type int, assuming
that x is an int). It also (and more importantly) has the effect of storing the value 3 in
the dial named x. This effect (of evaluating the expression) is called a side effect. All
assignment expressions (including compound assignments) are side effecting.
Autoincrement and autodecrement are also side−effecting expressions. Method
invocation expressions are also side−effecting, although not every method invocation
actually has a side effect. Instance creations — new expressions — are also
side−effecting.

So, for example, a simple assignment statement can be made by adding a semicolon to
the end of the assignment expression x = 3

x = 3;

Chapter 6 Statements and Rules 177

The semicolon turns this into a statement. It no longer has a value or a type; it just does
its work.

To execute an expression−semicolon statement, simply evaluate the expression. Of
course, this expression may have complicated subexpressions that must be evaluated
according to the rules described in the previous chapter. Since the expression is a
side−effecting one, something will happen — an effect will be produced — during the
evaluation.

After executing a side−effecting−expression−plus−semicolon statement, execution
proceeds at the following statement.

6.3 Declarations and Definitions

We have also already seen declarations in Chapter 3, Things, Types, and Names. A
declaration creates a new name that can be used to store (in the case of primitive types) or
label (in the case of reference types) a value. A declaration follows the Type−of−thing
Name−of−thing rule: It consists of a Java type followed by a Java name, then a
semicolon. For example:

int i;
Object thing;

A declaration (or definition) statement creates a kind of name called a local variable.

You can actually declare multiple names of a single type with one declaration statement.
The syntax for this is Type−of−thing Name−of−thing1, Name−of−thing2, and so on, with
commas between the names and a semicolon at the end:

int i, j, k;
Object thingOne, thingTwo;

The same type is associated to each of the comma−separated names, so the declarations
above are identical to

int i;
int j;
int k;

and

Object thingOne;
Object thingTwo;

respectively.

178 Chapter 6 Statements and Rules

Style Sidebar

Formatting Declaration Statements

Remember that Java doesn't care how much white space you leave between things,
so there is no difference in meaning between putting the multiple declarations on
one line or many. It is definitely easier to read on multiple lines, though, so the
convention is to put each declaration on its own line.

When one declaration statement is used to declare many names, you can put the
names on one line or on several. It's good style to indent all of the names on
subsequent lines of a single declaration so that they line up with the first name
declared:

Object thingWithALongName,
 anotherThingWithALongName;

This way, it's easy to see that anotherThingWithALongName is involved in the same
declaration statement as thingWithALongName.

Although it is technically correct to mix declarations and definitions of a single type
using the comma−separated multiple declaration notation, this is not good style. It
is too easy to miss a definition among the declarations; mixing the two makes your
code unnecessarily harder to read.

A declaration makes it legal to use the name to hold/label appropriately typed values. But
the declaration, by itself, doesn't explicitly assign a value to the name. In fact, for the
most generic kind of name—a local variable—it is illegal to use a name without first
assigning it a value.

[Footnote: It is, however, legal to assign a label−name local variable the special
non−value null. Assigning null to a name means that the name doesn't refer to
anything. Not assigning forces the computer to guess. The rule is that you just can't leave
the computer to guess.]

You can assign this value directly in the declaration (making it a definition), or you can
assign it before the first time that you try to use the name's associated value.

A variant on a declaration statement is a definition. A definition is a declaration
statement with = expr between the Name−of−thing and the semicolon (or comma).
This statement declares the name, but it also assigns it the value of expr. For example:

Chapter 6 Statements and Rules 179

int i = 2;
String who = “Pat”;
double pi = 3.14159,
 ninetyDegrees = pi / 2;

Note that the final statement here assigns the value 1.570795 to the name ninetyDegrees.
First 3.14159 is put into the dial named pi. Next, the expression pi / 2 is evaluated:
its value is the value inside the pi dial divided by 2. Finally, this value is assigned to
(stored in) the (newly created) dial named ninetyDegrees.

It is legal to mix declarations and definitions in a single statement — assigning initial
values to only some of the names — but this can make your code hard to read. It is
usually better to use multiple statements in this case.

Executing a declaration statement creates a dial or label associated with the name
declared. Executing a definition is the same as declaring a name, plus immediately
afterwards executing an assignment statement. Note that this assignment is an expression
and may have subexpressions, causing a significant amount of evaluation before
execution is complete.

After executing a declaration or definition statement, execution proceeds at the
immediately following statement.

6.4 Sequence Statements

You can also make a bigger statement out of a collection of statements. You do this by
enclosing them in braces:

{
 int i = 3;
 Console.println(“i is ” + i);
 int j = i + 1;
 j = i + 5;
}

This statement−made−of−statements is a block, and it mostly serves to organize your
code. Some other statements — such as if, described below — are often used together
with blocks.

Any statement can be used at any point inside a block. In particular, declarations and
definitions may appear anywhere in a block. This is useful as it allows you to declare a
name immediately before you need it. Doing so makes it easier to read your code as the
reader is less likely to have forgotten what you mean by that name.

Blocks also have implications for scoping of names: a variable has scope (its name can be
used) from the point in the code where it is declared until the end of the first enclosing
block.

180 Chapter 6 Statements and Rules

[Footnote: Remember, not all names are variables. We will learn more about parameters
and fields in subsequent chapters. Type names have scope everywhere that they are
visible.]

So if we declare a name at the top of the block, it has scope for the whole block, as i does
in the example above. But j is not declared until after the call to println, so the definition
of i and the call to println are outside of j's scope:

{
 int i = 3; #
 Console.println(“i is ” + i); #
 int j = i + 1; # # scope of i
 j = i + 5; # scope of j #
} # #

This means, for example, that it would be illegal to use j in i's definition:

{
 int i = j; // illegal use of j outside its scope!
 Console.println(“i is ” + i);
 int j = i + 1;
 j = i + 5;
}

Beware: The scope of a local variable only persists until the end of the enclosing block.
This means that a local variable must be declared at the same level as (or at a level
enclosing) each of its uses.

{
 {

// A variable declared here...
 String name;
 }

// ...is invisible here, making this reference
name = “Pat”;
// illegal!

}

The rules for executing a block statement are: execute each substatement in turn, from the
top (beginning) of the block to the bottom (end) of the block.

After a block, execution continues at the next statement.

Chapter 6 Statements and Rules 181

Style Sidebar

Formatting Blocks

The opening brace of a block should generally appear on its own line. If the block is
part of a compound statement (such as an if), its opening brace can appear as the
last character on a line. This is the style recommended in Sun's coding conventions
at www.java.sun.com/docs/codeconv. However, some studies have found code
using this convention harder for programmers to scan than code in which the open
brace appears alone on a line.

Text within a block should always be indented (typically by two or four characters).
This makes the left−hand margin of code in a block line up. The text — but not the
braces — of an interior block is indented further; the original indent is resumed
when the interior block is closed, i.e., after the closing brace.

The closing brace of a block should always begin its own line. If the closing brace
completes the statement, as in a simple block, it should appear alone on that line.

// Some statements ...
{
 // Statements in a block all line up.
 {
 // Interior block statements
 // are indented further.
 }
 // Close brace exits the block
 // and restores earlier indent.
}
// ...and so on.

As mentioned above, the opening brace is often placed at the end of the portion of a
statement whose body is the block, for example:

 if (blah) {
 // statements
 }

182 Chapter 6 Statements and Rules

6.5 Flow of Control

So far, we have seen declarations, definitions, and a few executable statements made out
of side−effecting expressions such as method invocation and assignment. You can write
some interesting programs using only these constructs, but typical programs involve more
complex structures. One of the most important features is the ability to control which
code is executed when. This is called flow of control. These statements have execution
rules that do not always cause the next statement to be executed in turn. Instead, a
statement may be executed more than once or not at all.

6.5.1 Simple Conditionals

One of the simplest forms of control flow is conditional execution. Conditional
execution refers to a situation in which a block of code may or may not be executed,
depending on the value of an expression. It is analogous to a set of instructions that says

Step 1. If your gizmo is not already assembled, you must
assemble it before going on to step 2. To assemble your
gizmo, first...

Step 2. Now that your gizmo is fully assembled, ...

In Java, conditional execution is most often and most generally embodied in the if
statement. For example:

if (theLight.isOn()) {
 theRoom.isLit = true;
}

Let's dissect this statement. It begins with the Java keyword if. After the if is a boolean
expression that must be enclosed in parentheses. The closing parentheses are followed by
a block statement.

[Footnote: There are other kinds of statements that can appear in place of this block, but
in this book we will restrict ourselves to the cases in which the if body is a block.]

This block is sometimes called the if statement's body or the consequent; the boolean
expression is called the if statement's test or condition.

Chapter 6 Statements and Rules 183

Execution of the if statement proceeds as follows. First, the boolean condition
expression is evaluated. If the value of this expression is true, the if's body block is
executed. If the value of the boolean condition expression is false, the if's body block is
skipped.

In either case, execution proceeds at the next statement following the if's body.

The if statement, as defined, is very useful when you want to do something or skip it.
But often you want to do one of two things. We can express this using two if statements
with inverse conditions:

if (theLight.isOn()) {
 theRoom.isLit = true;
}

if (! (theLight.isOn())) {
 theRoom.isLit = false;
}

This is poor code in three ways. The first is that it evaluates the same expression —
theLight.isOn — twice, but the code would not work as we want if the values
returned were different in the two evaluations. (Imagine that the light was off the first
time you asked and on the second time. The value of theRoom.isLit would never
get set!)

We could fix this problem by temporarily assigning this value to a boolean name, and
then testing the name twice:

boolean itIsLight = theLight.isOn();

if (itIsLight) {
 theRoom.isLit = true;
}

if (! itIsLight) {
 theRoom.isLit = false;
}

But this makes a second problem with the code even more apparent. This code is testing a
boolean expression (theLight.isOn() or itIsLight, depending on which
version) in order to set another boolean expression. It would be cleaner just to write:

184 Chapter 6 Statements and Rules

theRoom.isLit = theLight.isOn();

This statement is equivalent to the whole previous example (using itIsLight), and much
easier to read. For more on this stylistic point, see the sidebar on Using Booleans.

Of course, we can write other code that's not subject to these two problems. For example,
we could use this idea to write code to compute absolute value of a given int, x.

int absValue;

if (x > 0) {
 absValue = x;
}

if (x < 0) {
 absValue = − x;
}

if (x == 0) {
 absValue = 0;
}

This code has neither of the previous problems — x doesn't change, so we can test it
repeatedly, and the value assigned is an int, not a boolean, so we can't write the shorter
assignment statement. But this code doesn't make it clear that these are really three cases
of the same test. There is a form of an if statement that allows us to make this clearer. It
uses the Java keyword else to denote a situation in which we know that these
conditions are mutually exclusive, i.e., at most one of them can hold.

So, for example, we could rewrite our light−tester (verbosely) as:

boolean itIsLight = theLight.isOn();

if (itIsLight) {
 theRoom.isLit = true;
} else {
 theRoom.isLit = false;
}

This still isn't as nice as the one−line version, but it gives us the opportunity to illustrate
control flow in an if/else statement. To execute an if/else statement:

 Evaluate the boolean condition expression.1.

Chapter 6 Statements and Rules 185

 If the value of the condition is true, execute the if body block, then skip to the
end of the entire if/else statement (i.e., to step 4).

2.

 Else (the value of the condition statement is false, so) execute the else body
block. An else body is sometimes called an alternative.

3.

 Execution continues at the following statement.4.

Since there might be more than two mutually exclusive conditions — as in the absolute
value code — else is allowed to have its own condition. An else with a condition is like
an if, except that you only execute that part of the statement if all previous conditions in
this if/else statement have been false. An else with no condition is always executed if
no previous condition in this if/else statement has been true.

if (x > 0) {
 absValue = x;
} else if (x < 0) {
 absValue = − x;
} else {
 absValue = 0;
}

Note that this is all one statement, not three as in the previous version. Exactly one of the
assignment statements will be executed, no matter what the value of x at the beginning of
the if statement.

Even now, this is not the most elegant absolute value code we could write; for example,
the final case is redundant and could be folded into the first case using >= instead of
>. It does, however, illustrate the syntax of cascaded if statements. We will return to
examine if statements, and other conditionals, in the chapter on Dispatch.

186 Chapter 6 Statements and Rules

Style Sidebar

Using Booleans

There are only two boolean values, true and false. There can be lots of
boolean labels, but each label is attached to either true or false; there is
nothing else. This means that testing whether a boolean is the same as true, e.g.

(boolVal == true)

is redundant. You can just use boolVal, since it's either true or false. Similarly,
you don't need to use an if statement to test a boolean if you're generating a
boolean value. For example,

if (boolVal) {
 return true;
} else {
 return false;
}

is also redundant: just return boolVal;. The same thing applies if you're
assigning to a variable instead of returning: otherBoolVal = boolVal; (or
otherBoolVal = ! boolVal; if you want to reverse its sense).

6.5.2 Simple Loops

Another flow−of−control construct is while. The while statement takes a condition and
a block, just like the simple form of an if statement. Execution of a while statement
first evaluates its boolean condition expression. If the condition is true, the while body
block is executed. When execution of each statement in the body is complete, the
while's condition is checked again. Again, if the condition is true, the body is executed.
This continues until the evaluation of the condition expression yields false; at this point,
execution continues at the next statement after the while body.

There are several uses of a while loop. One is to continually test something until it
becomes true:

Chapter 6 Statements and Rules 187

int i = 1;

while (i < 100) {
 Console.println(“I'm up to ” + i);
 i = i + 1;
}

This loop prints the numbers from 1 to 99. (Why doesn't it print 100?)

Another use is for a loop that keeps going essentially forever. (It will stop when
something stops the program, but not before):

while (true) {
 myOutput.writeOutput(myInput.readInput());
}

This loop continually passes whatever input it gets to its output. Since the value of true
doesn't change, this loop won't end until something nasty happens to it. Writing loops like
this one — that go on essentially forever — is much easier than writing loops like the
counting loop, above, because in the counting loop you have to keep track of what's true
each time you go around the loop. For example, the value of i when you exit the loop
above will always be one more than the last value printed.

Here's an even more tricky one:

while (x < 25) {
 x = x + 3;
 x = x − 2;
}

If x's value is 20 when we reach the beginning of this loop, what will its value be when
we exit? Remember that the test expression is only checked at the beginning of each pass
through the loop, not in the middle.

There is another looping construct in Java, called do/while statement or just a do loop. It
is much like the while loop, except that the loop body is always executed once before
the condition is tested:

188 Chapter 6 Statements and Rules

int i = 1;

do {
 Console.println(“I'm up to ” + i);
 i = i + 1;
} while (i < 100)

As with a while loop, once the loop exits, execution proceeds at the statement following
the entire do statement.

6.6 Statements and Rules

Programs are not simply sequences of instructions to be executed. Instead, the
instruction−followers executing these statements are embedded in a community of other
instruction−followers. A program is a community of interacting entities providing
ongoing behavior and services. In this section, we look at how those interactions too rely
on statements.

When one Thing needs to communicate with another, this is commonly accomplished
through method invocation. Method invocation is an expression in which one object
supplies another with information (in the form of arguments), and the second supplies the
first with other information (in the form of the return value). These mechanisms are the
major means of inter−object communication and coordination. Of course, method
invocation can also be used within an object, allowing one part of the object to
communicate with another.

We have previously seen how interfaces specify methods that an object provides. Now,
we turn to the question of how method behavior is actually implemented. Statements
provide the key. Performing a method amounts to following the instructions associated
with that method, i.e., stepping through the instructions for that rule. Statements are the
steps of those instructions. By sequencing statements, you can build a rule that the
computer can follow to accomplish a desired task. Some rules require information in
order to accomplish their tasks. (For example, a rule that doubles a number needs the
number to be doubled.) Some rules produce results. (For example, the doubling rule
might produce the doubled number.) Some rules behave differently under different
circumstances. (This uses a conditional statement).

In order to use a rule — to interact with it — you need to know whose rule it is, what
information you need to supply in order for the rule to do its work, and what the rule will
give you in return. This prefigures the idea of method signature. There are other things
you'd like to know about a rule — such as the relationship between the rule's input and its
output — and these form the basis of the rule's documentation.

For example, here is a rule for printing a brief form letter:

Chapter 6 Statements and Rules 189

to printFormLetter using (String title, String firstName,
 String lastName)

 1. print “Dear ”
 2. if (title isn't null) print title + lastName
 else print firstName
 3. println “:\nWe are tremendously pleased to inform you that”
 4. println “you have won!”.toUpperCase()
 5. println “Not much, but what did you expect?”
 6. println “ Sincerely,\n me”

It's just a short hop from this pseudocode rule to real Java:

void printFormLetter(String title, String firstName,
 String lastName) {
 if (title != null) {
 Console.print(title + lastName);
 } else {
 Console.print(firstName);
 }
 Console.print(“:\nWe are tremendously pleased ”
 + “to inform you that ”);
 Console.println(“you have won!”.toUpperCase());
 Console.println(“Not much, but what did you expect?”);
 Console.println(“ Sincerely,\n”
 + “ me”);
}

6.6.1 Method Invocation Execution Sequence

Method invocation is, as we have seen, an expression. To invoke the printFormLetter, we
need to know whose method it is. We follow this object expression with a dot, then the
name of the method, then the parentheses−enclosed parameter list:

theWidgetCompany.printFormLetter(“Prof.”, “Pat”, “Smith”)

To evaluate this expression, we need to invoke theWidgetCompany's printFormLetter
method (using the rule, or instructions, or method body, provided above) with the
arguments “Prof.”, “Pat”, and “Smith”.

The first step in method invocation is parameter binding. In this step, each parameter
name (title, firstName, and lastName) is treated as though it were newly declared and it
is given the value of the corresponding argument. (Recall that parameters are the names
in the method declaration, while arguments are the values supplied in the method
invocation expression.) In order for this to work, each value must be assignable to the
corresponding parameter's declared type.

190 Chapter 6 Statements and Rules

After parameter binding, method invocation proceeds as though the method body were a
simple block. The block is, however, within the scope of the parameter bindings, so that
inside the block the parameter names can be used to refer to the provided argument
values. For example, in the body of the printFormLetter, title is bound to “Prof”,
firstName is bound to “Pat”, and lastName is bound to “Smith”.

Now the body statements are executed in turn. In this case, the first statement is an if, so
its test expression is evaluated to determine whether to execute the consequent block or
the alternative block. When the test expression

title != null

is evaluated, title is bound to “Prof”, so it is not null, causing the consequent to
execute.

This argument−value−providing is one way in which method invocation implements
inter−entity communication: the value is communicated from the method−invoker to the
method owner.

6.6.2 Return

This special statement can only be used inside method bodies. It is used to terminate the
execution of the method body. It is also what is responsible for making a method body —
which is essentially a block statement — return a value — which is a necessary property
of a method invocation expression (unless the method's return type is void).

The need for this statement arises when the sequence of instructions that you are writing
is turned into a method body. In this case, you need to say what the method returns. This
return value becomes the value produced by evaluating a method invocation expression.
This is accomplished using a return statement. The syntax of a return statement is

Syntax of a return statement

return expression;

where expression can be any arbitrary Java expression. Remember: the return
statement — a statement — does not have a value, but the method invocation − an
expression — does.

To execute a return statement, evaluate the expression. Then, exit the enclosing
method, providing the value of the expression as the return value of the method
invocation expression. Exiting the enclosing method means both exiting from the block
that is the method body and also exiting the scope of the parameter/argument bindings.

Chapter 6 Statements and Rules 191

After a return statement, execution proceeds at the method invocation whose method
body contained the return statement; evaluation of this expression is complete (with its
value the value supplied by the return statement) and execution of the statement
containing the method invocation continues.

For example, if we execute

String transformed = this.transform(“Knock, knock”);

and the transform method of this object ends with the line

return “Who's there?”;

then the value of the invocation this.transform(“Knock, knock”) is
“Who's there?”. Execution continues by assigning the value of the invocation
(“Who's there?”) to the name transformed.

Another example is the doDouble(int) method mentioned above. The code for doDouble
might read:

int doDouble(int whatToDouble) {
 return whatToDouble * 2;
}

To evaluate the application of doDouble to 7:

 The parameter name whatToDouble is bound to 7.1.

 Within the scope of this binding, the body block of doDouble is executed.

 Each statement in the block is executed in turn. Since there is only one
statement, it is executed.

 The expression whose value is to be returned is evaluated. This
requires evaluating the subexpressions (name whatToDouble and
literal 2) and then applying the operator to these values.

i.

 The value produced by the operator expression (14) is returned by
the method.

ii.

a.

2.

 This exits both the method body block and the parameter scope, providing the
value (14) as the value of the method invocation expression.

3.

There is also an alternate form of return that does not take an expression. This form is

192 Chapter 6 Statements and Rules

used in methods whose return type is void. In this case, a return statement executes by
exiting the method (and, with it, the scope of the parameter names). Since the simple
return statement is used only in methods whose return type is void, there is no value
for it to supply.

This return statement can also be left implicit certain methods. For example, in the
printFormLetter method that we saw above, there was no explicit return statement. In
Java, a method without a return statement is presumed to have a return statement as
its final statement. This return statement is a simple return; — it is the form that
does not return a value. So the end of that method body was equivalent to saying

// ...
 Console.println(“ Sincerely,\n”
 + “ me”);
 return;
}

In a method whose return type is not void, an explicit return statement must always be
executed in order to provide the method's return value. Value−returning is another
example of inter−object communication.

Chapter 6 Statements and Rules 193

Chapter Summary

 Statements combine expressions to produce useful behavior.•

 A statement does not have a value or a type.•

 A statement is executed to produce an effect.•

 A side−effecting expression followed by a semicolon is a simple statement.•

 Declarations and definitions are also simple statements.•

 A sequence of statements can be grouped into a block by surrounding the
sequence with braces { }.

•

 Conditional statements allow you to write code containing alternative execution
sequences. The execution sequence of a conditional statement depends on the
result of evaluating a boolean expression.

•

 A loop allows the same block of code to be executed repeatedly, until an exit
condition — a boolean expression — is true.

•

 A return statement is used to exit from a method, with or without a value.•

 Method bodies, or rules, use sequenced statements — including loops and
conditionals — to produce chunks of executable behavior. A method is specified
by its name, the information it needs, and the value (if any) that it produces.

•

194 Chapter 6 Statements and Rules

Exercises

 Using Java's if statement, write instructions for determining which team returns
an out−of−bounds ball to play in a soccer game. In soccer, the team that did not
last touch the ball receives possession of the ball and returns it to play.

 You may presume that you have a method, lastTouch, that returns either
homeTeam or visitTeam, and that the goal of your code is to assign the
correct team value (either homeTeam or visitTeam) to the already−defined
name possessingTeam.

a.

 In addition, make your code determine whether returnBallToPlayMethod
is sideThrow, cornerKick, or goalKick. You may make use of the
ballOutLine method to determine whether the ball exited via the sideLine,
the homeEndLine, or the visitEndLine.

[Footnote: If the ball has exited via the side line, the return is by side
throw. If the ball exits via the home end line and is last touched by the
home team, the visitors return the ball to play by means of a corner kick.
A ball that is pushed beyond the home end line by the visiting team is
returned by the home team via a goal kick. The situation at the visitor's
end line is the opposite.]

b.

1.

 Using Java's while statement, give instructions for building a tall tower of
blocks.

2.

 Using Java's while statement, give instructions for blowing up a balloon.3.

Chapter 6 Statements and Rules 195

 Which of the following are expressions, which statements, and which illegal? For
the expressions, indicate the type and value. For the statements, indicate the effect
(if known) and the execution sequence. You may assume that x is an int, b a
boolean.

 int x = 5a.
 boolean b;b.
 x + 3c.
 x = x + 3d.
 x = x + 3;e.
 x == 3f.
 x == 3;g.
 b = x == 3;h.
 {
 Console.print(“What is your name? ”);
 String name = Console.readln();
 String cap = name.toUpperCase();
 }

i.

4.

 What will the value of d be after each of the following statements? Also, indicate
any other changes that may occur as a result of executing the statement. You may
assume that they are executed in the order given.

 double d = 3.5;a.

 d = d * 3;b.

 if (d < 8) {
 Console.println(“d is pretty small”);
 }

c.

 d = 2.0;d.

 while (d < 30) {
 d = d * 2;
 }

e.

5.

196 Chapter 6 Statements and Rules

Interlude B

 Expressions and Statements

Chapter Overview

This interlude explores what you've learned so far about Java expressions and statements.
There is a supporting executable, distributed as a part of the on−line supplement to this
book, which allows you to experiment with the ideas described here. The goals of this
interlude are to show you how expressions and statements can be used in context and
simultaneously to give you an opportunity to explore interactions among entities and how
these interactions can be used to generate a variety of basic behaviors.

Objectives of this Chapter

 To increase familiarity with expressions and statements, including return
statements and conditionals.

1.

 To be able to read and write simple sequences of instructions.2.

 To appreciate how multiple independent instruction−followers can produce
behavior through their interactions.

3.

 To begin to appreciate the differences between parameters, local variables, and
fields.

4.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

B.1 The Problem

This interlude is inspired by a simple child's toy called an Etch A Sketch®. In case you
may not be familiar with an Etch A Sketch®, here is a brief description:

[Footnote: The Etch A Sketch® product name and the configuration of the Etch A
Sketch® product are registered trademarks owned by the The Ohio Art Company. Used
by permission.]

An Etch A Sketch® is a rectangular frame (generally red) with a silver screen in the
center and two white knobs, one in each of the lower corners. Inside the silver screen is a
point of darker grey:

Figure 1: A simple drawing tool.

An Etch A Sketch® is a simple drawing tool. Turning the knobs moves the darker grey
point around the screen. As the point moves, it leaves a darker grey trail behind it,
showing where it has been. By coordinating the motion of the knobs, you can draw
pictures.

On an Etch A Sketch®, each knob controls one direction of motion of the darker grey dot.
Rotating the left knob moves the dot from side to side. Rotating the right knob moves the
dot up and down. Keeping a knob still prevents the dot from moving in the corresponding
direction. So the position of the knob determines the position of the dot on the screen (in
one dimension) and changing the knob position moves the dot (in that dimension).

By rotating just one knob — by leaving the position of the other knob fixed, or constant
— you can draw a straight (horizontal or vertical) line, as in figure 2. By rotating both
knobs at appropriately coupled velocities, you can draw diagonal lines of varying slope.
Proficient Etch A Sketch® users can draw complex pictures by coordinating the knob
position changes.

198 Interlude B Expressions and Statements

Figure 2: Drawing a straight line by rotating the appropriate knob.

In this interlude, we will explore the instructions required to perform similar operations
on a similar (though less brightly colored) display. In our application, we will supply a
rule that describes the current position of each knob. For example, the position might be
constant — always the same — in which case, the dot wouldn't move. Or it might be
steadily increasing, in which case the dot would move steadily across the screen.

Each rule will be read (and executed) repeatedly. It is as if, behind the scenes, an
instruction−follower were to check the position of each knob continually and update the
position of the dot correspondingly. Each time that the instruction−follower wants to
know what to do with the dot, it will ask our rule. If the rule always gives the same value,
it will be as though that knob is stuck in one position. If the rule changes the value, the
same change will be made to the knob's position over and over again. So, for example, if
the rule says “increase the current position,” the dot will move across the screen until it
reaches the edge.

In fact, there will be two instruction−followers, one for each knob. In addition, they're not
guaranteed to run at the same speed, or even to take fair turns. So, even if both knobs
were to have the same rules (e.g., “increase the current position by 1”), we might
discover that our dot was moving twice as fast horizontally as vertically.

Question: What would the resulting picture look like?

Answer: It would slope upwards gradually. @@supply pic.

Or the horizontal knob instruction−follower might check its rule three times, then the
vertical knob once, then the horizontal knob once, then the vertical knob three times, then
both at once.

Since the knobs are being checked by independent instruction−followers, any schedule is
possible in principle. By observing the actual behavior of the system, we can try to write
rules to coordinate the behavior of the two knobs explicitly. To begin with, we'll just
assume that they run at about the same rate.

An interesting feature of our program is that the knob−rules don't have any way to tell
which knob they're controlling. The rules just say things like “turn the knob to a higher
value” or “turn the knob lower” or “set the knob to the middle” (or “...halfway to the

Interlude B Expressions and Statements 199

edge”).

But on to the details....

B.2 Representation

In our application, instead of actually rotating knobs, we will represent a knob position as
a number. We will use a standard Cartesian coordinate frame, with (0,0) in the center,
increasing horizontal coordinates to the right, and increasing vertical coordinates at the
top.

[Footnote: In a later chapter, we'll see computer graphics that use a different coordinate
system, sometimes known as “screen coordinates.”]

Figure 3: Cartesian coordinates.

The value of the knob position can range between −maxPos and maxPos. Since (0,0) is
dead center on the screen, (0, maxPos) is the center top of the screen, while
(−maxPos/2, 0) is middle height, halfway to the left edge. The actual size of the Etch A
Sketch® window (and therefore the value of maxPos) will vary as the window is resized.

[Footnote: In particular, maxPos may have different values in the horizontal and vertical
rules. maxPos is simply the largest coordinate in whichever dimension the rule controls.
]

Question: What four points represent the four corners of the Etch A Sketch
®
 window?

Answer: (−maxPos, −maxPos), (−maxPos, maxPos), (maxPos, −maxPos), (maxPos,
maxPos). These are lower left, upper left, lower right, and upper right in order. But note
that maxPos in the vertical dimension may not have the same value as maxPos in the
horizontal dimension, and also that the value of maxPos may change as the window is
resized.

Our job will be to write the instructions for the next knob position: a rule that returns the
desired dot position. We'll need one rule for the horizontal knob and one for the vertical,
of course.

The form of a control rule is a sequence of Java statements ending in a statement of the

200 Interlude B Expressions and Statements

form

return double;

wheredouble is some Java expression with type double. The value returned by your
control rule will be used as the new position of the dot. So, for example,

return 0;

is a rule that holds the knob in the center, i.e., keeps the dot in the middle of the screen.
(Why is it ok to return 0 rather than 0.0?)

Remember, though, that this is just one rule. The other rule might be moving the dot
along steadily, or holding it at the edge of the screen, or doing something else entirely. If
return 0; is the vertical rule, then the dot will remain halfway up the screen, but it
could be anywhere along that halfway line.

Question: What rule would keep the dot centered horizontally (halfway between the
left and right edges) on the screen? Is this a horizontal− or a vertical−knob control rule?

Answer: return 0; as a horizontal−knob control rule. Using this rule, the dot may
move up and down (depending on the vertical control rule), but will always be halfway
between the two sides of the screen. Its horizontal position is fixed, i.e., constant.

horizontal rule

return 0;

If you use this rule as a vertical control rule, it will keep the dot halfway up the screen.
Its side−to−side (horizontal) position would be determined by the horizontal control rule.

vertical rule

return 0;

Question: How would you position the dot almost in the upper right−hand corner? The
answer should involve a horizontal rule and a vertical rule.

Answer: The horizontal rule should position it at the far right of the screen. Examining
the coordinate system (figure ??), we see that this is at maxPos. So return maxPos;
as a horizontal−knob control rule. The vertical control rule should position the dot at the
top of the screen, which is maxPos in that dimension. So the vertical rule is also return
maxPos;

horizontal rule vertical rule

return maxPos; return maxPos;

Interlude B Expressions and Statements 201

Question: How about the upper left−hand corner? Again, the answer should involve a
horizontal rule and a vertical rule.

Answer: In this case, the horizontal rule should put the dot at the far left, which
(according to the coordinate frame in figure 3) is at −maxPos. So the horizontal rule
should be return −maxPos; The vertical rule should put the dot at the top, which is
still maxPos, so the vertical rule should be return maxPos; as in the previous
question.

horizontal rule vertical rule

return −maxPos; return maxPos;

The vertical rule has not changed. But because it is interacting with a different horizontal
rule, the on−screen behavior is different.

Question: Assume that you have rules that position the dot in the upper left−hand
corner. Now suppose that you swap the horizontal and vertical rules. Where is the dot
now? What if you use the horizontal rule for both horizontal and vertical behavior?

Answer: This question involves swapping the horizontal and vertical rules from the
previous question:

horizontal rule vertical rule

return maxPos; return −maxPos;

Note that it is the vertical rule that now returns a negative value. Examining the
coordinate frame in figure 3, we see that the horizontal rule puts the dot on the
right−hand edge of the frame, while the vertical rule puts the dot at the bottom. So the
result will be a dot in the lower right−hand corner of the frame. Swapping the rules — so
that the same two rules play different roles — changes the behavior of the system, too.

A rule is a sequence of statements including a value returning statement. A rule is
executed by following the instructions until a return statement is reached. This kind of
rule is essentially the body of a Java method. This application focuses attention on the
sequence of statements — the method body — but its ideas apply to Java methods as
well.

B.3 Interacting with the Rules

In introducing this system, we said, “Each rule will be read (and executed) repeatedly.”
But nothing about the observable behavior of the system has really made this clear. In
fact, in the examples above, each rule might be followed only once and the same results
would still be produced. Each of the rules that we have used so far has been like setting
the Etch A Sketch® knob to a certain position. If you set the knob to the center, it looks

202 Interlude B Expressions and Statements

the same whether you do it once (and then just leave it there) or do it over and over,
repeatedly making sure that the knob is set to the center position. So how can we tell
what the Etch A Sketch® is actually doing?

In order to see that the rules are executed repeatedly, we need another (non−rule) way to
change the position of the dot. If we could move the dot this way, we would see that
continued execution of the rules forces it back to the “stuck knob” position described by
the rules. Imagine that both rules say

return 0;

So each instruction−follower will keep putting the dot right in the middle of the screen.
This won't look like much until we move the dot. But if we get the dot to jump to the top
of the screen, the next time that the instruction−follower executes the rule it will still put
the knob back into the position mentioned in the rule — the center of the screen, in our
example. We can see that the rules for our Etch A Sketch® are invoked repeatedly, rather
than just run once, by interacting with them.

In fact, in our Etch A Sketch® application, you can move the dot using your mouse. By
clicking the mouse at a particular point on the Etch A Sketch® screen, you move the dot
there. Almost immediately, the instruction−followers go back to their
knob−rule−checking. This means that if you position the dot with the mouse, it may not
stay there for very long. Fortunately, you can see where the dot has moved because every
time that the instruction−follower moves the dot, it leaves a (red) trail behind it. Indeed,
we will use this feature to draw pictures. So, for example, you can make a line from the
upper lefthand portion of the Etch A Sketch® to the center by using the rules

horizontal rule vertical rule

return 0; return 0;

and clicking the mouse in the upper lefthand portion of the window:

@@add pic

The mouse click moves the dot momentarily, then the execution of the rules brings the
dot back to the center, leaving a trail. You — the user — provide a third independent
control to this application. By interacting with the dot, you, too, affect its behavior.

Question: Combining these two observations — leaving trails and “jumping” the dot
around using the mouse — can you figure out how to create an asterisk (a bunch of line
segments intersecting in the center)?

Answer: If you run the Etch A Sketch® with both rules set at return 0; the dot will
return to the middle, no matter where you move it with the mouse:

Interlude B Expressions and Statements 203

horizontal rule vertical rule

return 0; return 0;

Now, with the mouse, click anywhere. The dot will jump there, then immediately (well, as
soon as the horizontal and vertical rules are sampled) return to the center. This should
draw a line from wherever you clicked to the center. Repeat this, clicking somewhere
else. Eventually, you'll have a lovely asterisk.

@@add a picture.

Actually, you can make an asterisk around any point in the screen, not just the center of
the screen. Try setting the rules to:

horizontal rule vertical rule

return maxPos/2; return 0;

Then repeat the clicking around process. Now you should get an asterisk centered at
(maxPos/2, 0), i.e., centered vertically but in the right half of the screen.

@@another pic.

Rule bodies as we have presented them here are really just very simple method bodies.
The return statement supplies the return value of its containing method. In the rule form
that we are using here, the enclosing method declaration and braces are omitted. We will
see more of how to write and use methods in the next chapter.

By manipulating the behavior of each method, the role played by each, and how we and
the system interact, we can generate a variety of different behaviors even with extremely
simple code.

B.4 Paying Attention to the World

So far, the rules that we have written return the same value, no matter where the dot starts
out. This corresponds to a rule that drives the knob to a certain fixed position, regardless
of where it starts out. When you don't move the dot with the mouse, the rule causes the
dot to sit still. When you do use the mouse to move the dot, the rule causes the dot to
jump back to the same place that it has been. In this section, we will see how our rules
can respond to information that they are given.

Each time that an instruction−follower goes to execute a rule, the name pos has been
pre−defined for it to hold the current position of the dot (along the relevant dimension).
So, if the dot is half−way between the left side of the screen and the center, pos will be
−1/2 maxPos when the horizontal rule is invoked, while if the dot is all the way at the
right side of the screen, pos will be maxPos.

204 Interlude B Expressions and Statements

Question: Using this information, write a rule that causes the dot to stay where it is.

Answer: “Where it is” is always pos — pos is the current position of the dot when the
rule is about to be executed. So, no matter where the dot is, we can make it stay there
using the rule

return pos;

If the dot is at 36, pos will be 36 and this rule will return 36. If we click the mouse and
move the dot to 78, pos will be 78 the next time that the rule is executed, and we will
return pos, or 78. Since pos is always where the dot is, returning pos will keep the dot
there.

Note that pos is defined anew each time that the rule is executed. It is, in effect, a
parameter to the rule.

Question: What happens when the dot is moved, using the mouse?

Answer: When the dot is moved, the rule still says “stay where you are.” So each time
you click the mouse, the rule adjusts the knob to keep the dot where you've put it.

Note that the horizontal rule and the vertical rule each have their own version of pos . So
pos in the horizontal rule has nothing to do with pos in the vertical rule; each gets its own
proper position.

Now, using the information that pos is where the dot is, we can cause the dot to move and
keep moving. Each time the knob is checked — each time the rule is invoked — the knob
should turn just a little bit.

Question: What would such a rule look like?

Answer: We could use a rule that says

return pos+1;

This rule checks where the dot is, then instead of setting the knob there, it moves the knob
slightly. The next time the rule is executed, it will move the dot a little bit further over.
This will continue to happen until the dot reaches the edge of the screen.

[Footnote: Why not pos = pos + 1? Pos is a local name that this piece of code has
for the current position of the dot. It is NOT the “control” for the current position of the
dot. When the instruction−follower is about to execute the instructions, it creates a new
dial — called pos — and sets it to the value that represents the current position of the dot.
After this happens, there's no additional connection between the value of the pos dial and
the position of the dot. Reading the pos dial tells you what the current position of the dot

Interlude B Expressions and Statements 205

is. But changing the pos dial doesn't move the dot. Returning a value does.

What would happen, then, if we ran with the horizontal rule pos = pos + 1? First,
we'd get an error. Remember, a rule has to end with return double; So now
consider pos = pos + 1; return 0; This would be exactly the same as just
return 0;, i.e., it would drive the dot to the center. How about pos = pos + 1;
return pos;? This works, but it isn't as “nice” as return pos+1; The reason it
works is that it first modifies the pos dial to have the value we want to return (pos+1),
then returns the value on the dial. There's really no reason to modify the dial; we can just
return the value directly.]

The name pos is a parameter — a name whose value is defined before the rule (method)
body begins to execute. We can create names (dials) of our own as well. For example, a
much more long−winded way of writing the previous rule might be:

double velocity = 1; // how much the position changes by.
double newPos; // what the new position will be.

newPos = pos + velocity; // compute next position ...
return newPos; // ... and return it.

The names velocity and newPos here are new local variables we create. Their
declarations last until the return statement. Each time that this set of instructions is
executed, the declaration line double velocity = 1; is executed again, and a new
dial called velocity is created. (Yes, that's a lot of wasted dials. Don't worry; Java has
facilities to make sure they are recycled.) In a later section, we will see a different kind of
name that persists from one rule execution to the next.

Question: What happens when the dot reaches the edge of the screen?

Answer: At this point, pos will continue to be increased. But values greater thanmaxPos
aren't allowed. (The application is written so that values greater than maxPos are treated
just likemaxPos, so the dot will sit at the edge of the screen.)

Question: How would you make the dot move in the other direction?

Answer: With a rule that says

return pos−1;

This rule makes the knob turn a little bit in the opposite direction. Remember, returning a
value is the way to move the dot.

206 Interlude B Expressions and Statements

B.5 Fancy Dot Tricks

Question: What would happen if you used the rules:

horizontal rule vertical rule

return pos+1; return 0;

Assume that the dot starts in the center of the screen.

Answer: You would get a horizontal line from the center of the screen to the right hand
edge of the screen.

Question: How would this be different if the rules were

horizontal rule vertical rule

return pos+1; return pos;

Answer: If the dot starts in the center of the screen and you don't click the mouse, you
wouldn't be able to tell whether the vertical rule said return 0; or return pos; The value
of pos (for the vertical rule) would start out as 0, and since nothing changes it, it would
remain 0. The only way to see a difference is to move the dot (using the mouse). If you let
the dot move across the screen until it's halfway to the right edge, then click the mouse in
the lower left (at the X), here's what you'll see:

@@add picture

Question: What does the dot do if you start in the lower left hand corner of the screen
and use the rules

horizontal rule vertical rule

return pos+1; return pos+1;

Answer: This rule pair would draw a diagonal line from the lower left hand corner of the
screen towards the upper right hand corner.

[Footnote: Actually, the line would only go towards the corner if the screen were
relatively square. This diagonal line has a slope of 1.]

Question: Can you make the dot move from the maxPos edge of the screen to the
other edge when it gets there?

Answer: In order to do this, we need to check whether we've gotten to themaxPos edge.
We can do this using an if statement:

Interlude B Expressions and Statements 207

if (pos < maxPos) {
 return pos + 1;
} else {
 return −maxPos;
}

Question: Can you make the dot move more quickly across the window?

Answer: In the previous rules, we've increased pos by 1 each time. If we increase pos by
a larger number, it will move more quickly. In fact, this increase to pos is the velocity —
the speed — of the dot.

We can use this rule to create a sort of barber−shop pole effect — a slowly climbing
spiral around the window. To do this, we use a horizontal wrap−around rule and a
vertical wrap−around rule. By setting the horizontal rule to move more quickly than the
vertical rule, we get a line with a gradual slope. Since we're using wrap−around rules, the
line repeats over and over again as it moves up the screen.

So starting in the lower left hand corner of the screen and executing

horizontal rule vertical rule
 if (pos < maxPos) {
 return pos + 5;
 } else {
 return −maxPos;
 }

 if (pos < maxPos) {
 return pos + 1;
 } else {
 return −maxPos;
 }

produces something like:

@@add pic. a sequence would be better.

For each Etch A Sketch® rule, pos is a name whose value is fresh each time the rule is
executed. There is no connection between the value of pos from one invocation of the
horizontal rule to the next. The value of pos for the horizontal rule is unrelated to the
value of pos for the vertical rule. This behavior is essentially the behavior of a parameter
to a Java method. In the next section, we will see a different kind of name.

B.6 Remembering State

In the previous section, we saw how to prevent the dot from getting stuck at one edge of
the screen by jumping it to the other edge. It might have been nice to have the dot bounce
back from the edge — turning to move in the opposite direction — instead. It turns out
that that behavior requires an additional idea and a corresponding bit of machinery.

208 Interlude B Expressions and Statements

Suppose that we wanted to get the dot to turn around. We might start with a rule that
looks like the “jump to the other edge” rule, trying to detect when we've bumped into the
maxPos edge:

if (pos < maxPos) {
 return pos + 1;
}

This rule seems reasonable enough. It will cause the dot to move along until it reaches
maxPos. But what then? When we reach maxPos, the if test will fail and we'll drop
through to the else clause. It goes through maxPos − 2, maxPos − 1, maxPos.
Now, it needs to go to maxPos − 1, (and then to maxPos − 2, maxPos − 3 and so
on). So we might try

else {
 return pos − 1;
}

Sure enough, the dot's positions will be maxPos − 2, maxPos − 1, maxPos,
maxPos − 1. But then what? The problem is that when the dot is at maxPos − 1 and
this rule is executed again, the if test will succeed! The next position of the dot will be
((maxPos − 1) + 1), or maxPos! Then the if test will fail, triggering the else
clause: maxPos − 1. At this point, the dot will oscillate between maxPos − 1 and
maxPos forever.

What went wrong? As always, our errors are informative. The problem is that the
condition we're testing — whether our position is < maxPos — doesn't really tell us what
we need to know — which direction to move in. Our position might be maxPos − 1
because we're heading towards maxPos, or it might be maxPos − 1 because we're
heading back towards maxPos − 2. The if test doesn't give us any way to tell the
difference. In fact, nothing about the current rule execution or our current position can
answer this question for us. Instead, we need to know something about the previous
execution, or about where we've been.

B.6.1 Fields

At this point, we need to introduce some new machinery. In our application, there is a
special box (for each dimension) where we can enter names that persist from one
execution of a rule to the next. These names correspond to fields of instance objects.
They are like airport lockers: places that you can leave things when you're executing the
rule and find them the next time you come back into town.

Interlude B Expressions and Statements 209

There are several different ways we can use airport lockers to solve this problem. The
simplest is probably just to remember which direction we're going in. We can do this
using a boolean name. In this case, we'll call the boolean increasing. We start with
increasing true. So the declaration should say:

fields
boolean increasing = true;

(Recall that a declaration follows the Type−of−thing Name−of−thing rule. So this
declaration says we have a boolean — a true−or−false kind of dial — that is called
increasing. Because this is a definition, not just a declaration, it also sets the dial to read
true.)

Now, we can write an if statement that says what to do if we're increasing: increase pos,
unless we've hit the edge.

if (increasing) {
 if (pos < maxPos) {
 // Keep going higher — return the next position
 return pos + 1;
 } else { // Not (pos < maxPos)
 // We've hit the edge — turn around
 increasing = false;
 return pos;
 }
}

The else condition is similar, but with the signs reversed:

else { // Not (increasing)
 if (pos > − maxPos) {
 // Keep going lower — return the next position
 return pos − 1;
 } else { // Not (pos < maxPos)
 // We've hit the edge — turn around
 increasing = true;
 return pos;
 }
}

Question: Can you write a similar rule that relies on a numeric piece of state — double
previousPos — instead? What does the declaration of persistent state look like? What
happens the first time the rule is executed?

Answer: First, declare a field (in the special box):

210 Interlude B Expressions and Statements

fields
double previousPos = 0;

Note that the code starts by checking the boundary cases. If we're at the edge, we need to
go inwards. Otherwise, we remember where we were this time (previousPos=pos;) and
return a number that continues moving the dot in the appropriate direction.

if (pos >= maxPos) {
//we're at the higher edge.

 previousPos = maxPos;
 return maxPos − 1;
} else if (pos <= −maxPos) {

//we're at the lower edge.
 previousPos = −maxPos;
 return maxPos + 1;
} else if (pos > previousPos) {

//we're moving up: return a higher number.
 previousPos = pos;
 return pos + 1;
} else { // (pos <= previousPos)

//we're moving down; return a lower number.
 previousPos = pos;
 return pos − 1;
}

B.6.2 Fields versus Local Variables

Consider the previous example: using previousPos to keep track of which direction we
were going. Why do we need previousPos here? Why can't we just use pos? There are
two reasons. First, pos is already being used for something — the current position of the
dot. But the other reason is that pos gets a new value each time this set of instructions is
executed. (Actually, pos gets re−created each time this set of instructions is executed.)
So, if we put something we want to remember into pos, it won't be there the next time
that these instructions are executed. We need to create a special value — a field — to
hold things that we want to remember from one execution of these instructions to the
next.

Field declarations must be made in the special box. Declarations in the regular code box
are allowed, but they do not carry over from one execution to the next. Instead, a name
declared in running code is a temporary scratch space. The corresponding dial or label is
created each time that the declaration is executed (as a part of following those
instructions) and discarded when the return statement is reached. Such local scratch space
is called a local variable.

Contrast this with the use of velocity and newPos in an earlier section:

Interlude B Expressions and Statements 211

double velocity = 1; // how much the position changes by.
double newPos; // what the new position will be.

newPos = pos + velocity; // compute next position...
return newPos; // ... and return it.

The names velocity and newPos here are local variables. They are not fields. That is, they
are new dials that are created each time the rule is executed — local scratch space that
only exists during a single rule execution — and they go away when the rule execution is
done. Next time the rule is executed, they will be recreated. In contrast, a field — like
previousPos in the rule above — sticks around from one rule execution to another.

212 Interlude B Expressions and Statements

Chapter Summary

In this chapter, we have seen simple pieces of Java code that produce behavior. Each
short set of instructions is in effect the body of a Java method; a value is returned at the
end. The behavior of the system as a whole depends on the particular methods written. In
addition, system behavior depends on how those methods are coupled together and how
you as a user interact with them.

There are three different kinds of names that can be used in your code. First, you can use
names that have been pre−defined for you, like pos . These are called parameters. In
other chapters, we will see that in a Java method, all parameter names are included in the
method declaration.

There are also two kinds of names that are declared using standard declarations or
definitions. One kind is a temporary name that can be used during a single application of
your rule. These names can be declared anywhere in your code. They are called local
variables. The names newPos and velocity are examples of local variables. Local
variables can be declared inside a method.

The last kind of name sticks around from one use of your rule to another. These names
must be declared in a special box, separate from your rule code, but can be used freely in
your rule code. These names are called fields. In this chapter, increasing is an example of
a field. In the Etch A Sketch®, fields are declared in a separate box. In Java code
generally, fields are declared outside of methods (but within an enclosing class).

Interlude B Expressions and Statements 213

Exercises

See the text for things marked with a Question:. Also:

 Implement constant acceleration. Velocity is the change in position over time.
For example, the rule return pos + 1; has a velocity of 1, while the rule
return pos − 5; has a velocity of 5 in the opposite direction. Acceleration
is the change in velocity over time. For example, if we return pos+1; when
the rule is executed the first time and then we return pos+3; when the rule
is executed the second time, the change in velocity (i.e., the acceleration) is 2. To
implement a constant acceleration, you need to change the velocity by the same
amount each time. This means that the rule can't return pos + a constant; instead,
it has to return pos + an amount that changes each time. (Hint: Use a field.)

1.

 Can you make the dot go in a parabolic path? (Hint: what accelerations does it
need?)

2.

 We have given you a parameter named otherPos. Each time that a rule is
followed, otherPos begins with the position of the dot along the other axis. Using
this information, implement a function plotter. Write the code to plot the
following:

y = x^2;♦

y = sin(x);♦

y = 1/x;♦

You may want to look at the Math library.

3.

214 Interlude B Expressions and Statements

Chapter 7

 Building New Things:
Classes and Objects

Chapter Overview

 How do I group together related rules?•

 How do I build a computational object?•

 What are Java programs really made of?•

In this chapter, you will learn to put together the pieces you've already seen — things,
names, expressions, statements, rules, and interfaces — to create computational objects
that can populate your communities.

In order to create an individual object, you first have to describe what kind of object it is.
This includes specifying what things you can do with it — as in its interface(s) — but
also how it will actually work. This description of the “kind of object” is like building a
recipe for the object, but not like the object itself. (You can't eat the recipe for chocolate
chip cookies.) These object−recipes are called classes.

For each thing that your object can do, your class needs to give a rule−recipe. This is
called a method. Your objects may also have (named) pieces. These are called fields, and
they are special Java names that are always a part of any object made from this recipe.

When you actually use your class (recipe) to create a new object, there may be things that
you need to do to get it started off right. These startup instructions are called a
constructor.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

When you are building an object, you are bound by the interfaces it promises to meet. If
the interface promises a behavior, you have to provide a rule (method) body for the object
to use.

This chapter is supplemented by reference charts on the syntax and semantics of Java
classes, methods, and fields. It includes style sidebars on good documentation practice.

Most of the syntax of this chapter is covered in the appendix Java Charts.

Objectives of this Chapter

 To recognize the difference between classes and their instances.1.

 To be able to read a class definition and project the behavior of its instances.2.

 To be able to define a class, including its fields, methods, and constructors.3.

7.1 Classes are Object Factories

In Chapter 4, Specifying Behavior: Interfaces, we saw how to build an interface, or
specification, that described the contract a particular kind of object would fulfill. We also
saw that an interface does not provide enough information to actually create an object of
the appropriate kind. Interfaces do not say anything about how methods actually work.
They do not talk about the information that an object needs to keep track of. And they do
not say anything about the special things that need to happen when a new object is
created.

In this chapter, we will learn how to create objects and how to describe the ways in which
they work. The mechanism that Java provides for doing this is called a class. Like an
interface, a class says something about what kind of thing an object is. Like an interface,
a class defines a Java type. However, interfaces specify only contracts; classes also
specify implementation. Class methods are full−fledged rules, with bodies telling how
to accomplish the task of that rule (not just the rule specification, or method signature, of
abstract interface methods). Classes also talk about data — information to be kept track
of by objects — as well as methods, or behavior. And a special part of a class — the
constructor — talks about how to go about creating an object of the type specified by
that class.

7.1.1 Classes and Instances

Objects created from a class are called instances of that class. For example, the class
CheckBox refers to the instructions for creating and manipulating a GUI widget that

216 Chapter 7 Building New Things: Classes and Objects

displays a selectable checkbox on your computer screen. CheckBox is the name of the
class, i.e., of the instructions. Let's say we create two particular checkboxes:

CheckBox yesCheckBox = new CheckBox();
CheckBox noCheckBox = new CheckBox();

Figure 7.1. The actual CheckBoxes.

The two objects labeled by the names yesCheckBox and noCheckBox are instances of the
class CheckBox. That is, they are particular CheckBoxes. The instructions for how to
create — or be — a CheckBox, on the other hand, aren't a CheckBox at all; the
instructions are instructions, or a class. In fact, the instructions are an object, too, though
a very different kind of object and not one as obviously useful as a CheckBox or a Timer
or a Counter. The kind of object the instructions are is called a Class.

Because the class contains the instructions for how to make a new instance and for how
to behave like an instance of that class, we sometimes say that a class is like a factory
where instances are made. Both a factory and its product are objects, but factories and the
widgets that they make are very different kinds of objects. The factory has all of the
know−how about its instances. But the factory isn't one of its instances, just as the class
CheckBox isn't a CheckBox. It's a factory!

7.1.2 Recipes Don't Taste Good

Another analogy for a class (as opposed to its instances) is that the class is like a recipe
for how to make instances. The instances are like food cooked from the recipe (say,
chocolate chip cookies). It isn't hard to tell the difference between these things. The
cookies smell good. If you are hungry, the note−card with the recipe on it won't be very
satisfying. (It probably tastes a lot like cardboard.) On the other hand, if you're going
over to Grandma's to cook, you might want to take the recipe but you probably don't want
to stick the chocolate chip cookie in your back pocket. Classes actually contain a lot of
information other than just how to make an instance. (The recipe might, too. It might
include information on how long it takes to make the cookies, whether they need to be
refrigerated, how long it will take before they go stale, or even how many calories they
contain.)

Chapter 7 Building New Things: Classes and Objects 217

Figure 7.2. Two recipes (classes) and two platefuls of cookies (instances) made from the
second recipe.

7.1.3 Classes are Types

Like interfaces, classes represent particular kinds of objects, or types . Once a class has
been defined (see below), its name can be used to declare variables that hold objects of
that type. So an instance of a class can be labeled using a name whose declared type is
that class. For example, the CheckBoxes described above are labeled using names
(yesCheckBox and noCheckBox) whose declared type is CheckBox. Note that the class
CheckBox — the CheckBox recipe — can't be labeled using a name whose declared type
is CheckBox. The type of the class CheckBox is Class, not CheckBox. (This is the recipe
versus cookie distinction again.)

If an object is an instance of a class — such as yesCheckBox and the class CheckBox —
then the type membership expression

yesCheckBox instanceof CheckBox

has the value true. Of course,

CheckBox instanceof CheckBox

is false (since the class isn't a CheckBox), but

CheckBox instanceof Class

is true.

218 Chapter 7 Building New Things: Classes and Objects

Style Sidebar

Class Declaration

It is conventional to declare the members of a class in the following order:

 static final fields (i.e., constants)•

 static non−final fields•

 non−static fields•

 constructors•

 methods•

This order is not necessary — any class member can refer to any other class
member, even if it is declared later — but it makes your code easier to read and
understand.

All non−private members of the class should be listed in the class's documentation.

7.2 Class Declaration

A class definition starts out looking just like an interface declaration, although it says
that it is a class rather than an interface:

class Cat {
 ...
}

A class definition tells you what type of thing it is — a class — what it is called — its
name — and what it's made of — its definition, between braces. This last part is called
the class's body. The body of the class definition contains all of the information about
how instances of that class behave. It also gives instructions on how to create instances of
the class. These elements — fields, methods, and constructors — are called the class's
members.

[Footnote: Be careful not to confuse members, which are parts of the class, with
instances, which are objects made from the class. If chocolate chip cookies are instances
of the cookie class (recipe), the chocolate chips are members of the class.]

Chapter 7 Building New Things: Classes and Objects 219

Each member is declared inside the body of the class, but not inside any other structure
within the class. Another way of saying this is that each member is declared at top level
within the class. So members are all and only those things declared at top level within a
class.

For example, each instance of Java's Rectangle class has a set of four coordinates
describing the rectangle's position and extent, as well as methods including one which
tells whether a particular (x,y) pair is inside the Rectangle.

class Rectangle {
 ...
 int height;
 int width;
 int x;
 int y;
 ...
 ...inside(...)...
}

In this case, height, width, x, y, and inside are all members of the Rectangle class.

Members and instances are quite different:

 Members are parts of a class.•

 Instances are things created from the class.•

We will return to each of the elements of this declaration later in this chapter.

7.2.1 Classes and Interfaces

A class may implement one or more interfaces. This means that the class subscribes to
the promises made by those interfaces. Since an interface promises certain methods, a
class implementing that interface will need to provide the methods specified by the
interface. The methods of an interface are abstract — they have no bodies. Generally, a
class implementing an interface will not only match the method specifications of the
interface, it will also provide bodies — implementations — for its methods.

For example, a ScoreCounter class might meet the contract specified by the Counting
interface:

220 Chapter 7 Building New Things: Classes and Objects

interface Counting {
 void increment();
 int getValue();
}

So might a Stopwatch, although it might have a totally different internal representation.
Both would have increment and getValue methods, but the bodies of these methods might
look quite different. For example, a ScoreCounter for a basketball game might implement
increment so that it counts by 2 points each time, while a Stopwatch might call its own
increment method even if no one else does.

A class that implements a particular interface must declare this explicitly:

class ScoreCounter implements Counting {
 ...
}

If a class implements an interface, an instance of that class can also be treated as though
its type were that interface. For example, it can be labeled with a name whose declared
type is that interface. For example, an instance of class ScoreCounter can be labeled with
a name of type Counting. It will also answer true when asked whether it's an
instanceof that interface type: if myScoreCounter is a ScoreCounter, then

myScoreCounter instanceof Counting

is true . Similarly, you can pass or return a ScoreCounter whenever a Counting is
required by a method signature.

The generality of interfaces and the inclusion of multiple implementations within a single
(interface) type is an extremely powerful feature. For example, you can use a name of
type Counting to label either an instance of ScoreCounter or an instance of Stopwatch
(and use its increment and getValue methods) without even knowing which one you've
got. This is the power of interfaces!

7.3 Data Members, or Fields

The Rectangle class, above, had certain things that were a part of each of its instances:
width, height, etc. This is because part of what it is to be a Rectangle involves having
these properties. A Rectangle−factory (or Rectangle−recipe) needs to include these
things. Of course, each Rectangle made from this class will have its own width, height,
etc. — it wouldn't do for every Rectangle to have the same width!

[Insert pic of rectangles]

Chapter 7 Building New Things: Classes and Objects 221

Many objects have properties such as these: information called state or data that each
instance of a class needs to keep track of. This kind of information is stored in parts of
the object called fields. A field is simply a name that is a part of an object. For the most
common kind of field, each instance of a class is born with its own copy of the field — its
own label or dial, depending on the type of name the field is.

Declaring a field looks just like an ordinary name declaration or definition (depending on
whether the field is explicitly initialized). Such a declaration is a field declaration if it
takes place at top level in the class, i.e., if it is a class member. (A local variable declared
inside a method body or other block is not at top level in the class.)

Consider the Rectangle class defined above and reproduced here:

class Rectangle {
 int height;
 int width;
 int x;
 int y;
 ...
}

Each instance of this class will have four int−sized dials associated with it,
corresponding to the height, width, horizontal and vertical coordinates of the Rectangle
instance. These fields are declared at top level inside the class body.

These fields are declared here, but not initialized: none of these fields is explicitly
assigned a value. Fields, unlike variables, are initialized by default. If you don't give a
field a value explicitly, it will have a default value determined by its type. For example,
int fields have a default value of 0. Contrast int local variables, which don't have a
default value and cannot be used until they are initialized. For details on the default
values for each type, see the sidebar on Default Initialization.

222 Chapter 7 Building New Things: Classes and Objects

Java Types and Default Initialization

In Java, field names can be declared without assigning them an initial value. In this
case, Java automatically provides the field with a default value. The value used by
Java depends on the type of the field.

Fields with numeric types are initialized by default to the appropriate 0; that is,
either 0 or 0.0 (using the appropriate number of bits).

Fields with type char default to the value of the character with ascii and unicode
code 0 — '\u000'. This character is sometimes called the null character, but
should not be confused with the special Java value null, the non−pointer.

Fields with boolean type are by default assigned the value false.

Fields associated with label (reference) types — including String — are by default
not bound to any object, i.e., their default value is null.

If a declaration is combined with an assignment — i.e., a definition — the
definition value is used and these default rules do not apply.

These rules apply to names of fields as well as to the components of arrays —
described in Chapter 12, Dealing with Difference: Dispatch. In contrast, local
variables must be explicitly assigned values — either in their declaration
(definition) or in a subsequent assignment statement — before they are used. There
are also names called parameters, which appear in methods and catch
expressions; they are initialized by their invoking expressions and are discussed
elsewhere in this book.

7.3.1 Fields are Not Variables

The difference in default initialization is only one difference between fields and local
variables. This section covers several other important differences after first reviewing
some properties of local variables.

A local variable is a name declared inside a method body. The scope of a local variable
— the space within which its name has meaning — is only the enclosing block. At most,
this is the enclosing method, so the maximum lifetime of a variable name is as long as the
method is running. Once the method exits, the variable goes away. (A similar variable
will come into existence the next time the method is invoked, but any information stored
in the variable during the previous method invocation is lost.)

Chapter 7 Building New Things: Classes and Objects 223

7.3.1.1 Hotel Rooms and Storage Rental

Because a field is a part of an object, and because an object continues to exist even when
you're not explicitly manipulating it, fields provide longer−term (persistent) storage.
When you exit a block, any variables declared within that block are cleared away. If you
reenter that block at some later point, when you execute the declaration statement, you
will get a brand new variable. This is something like visiting a hotel room. If I visit
Austin frequently, I may stay in similar (or even the same) hotel rooms on each trip. But
even if I stay in the same hotel room on subsequent visits, I can't leave something for
myself there. Every time that I check into the hotel, I get what is for all intents and
purposes a brand new room.

Contrast this with a long−term storage rental. If I rent long−term storage space, I can
leave something there on one visit and retrieve it the next time that I return. Even if I
leave the city and return again later, the storage locker is mine and what I leave there
persists from one visit to the next. When I'm in Seattle, the things I left in my rental
storage in Austin are still there. When I get back to Austin, I can go to my storage space
and get the things I left there. This is just like a field: the object and its fields continue to
exist even when your attention is (temporarily) elsewhere, i.e., even when none of the
object's methods are being executed.

The storage locker story is actually somewhat more complex than that, and so is the field
story. It might be useful for someone else to have a key to my storage locker, and it is
possible for that person to go to Austin and change what's in the locker. So if I share this
locker with someone else, what I leave there might not be what I find when I return. It is
important to understand that this is still not the same as the hotel room. Between my
visits, the hotel cleans out the room. If I leave something in my hotel room, it won't be
there the next time I come back. Each time, my hotel room starts out “like new.” In
contrast, the contents of my storage locker might change, but that is because my locker
partner might change it, not because I get a freshly cleaned locker each time that I visit.

The locker partner story corresponds closely to something that can happen with fields. It
is possible for the value of a field to change between invocations of the owning object's
methods, essentially through the same mechanism (sharing) as the storage locker. To
minimize this (when it is not desired), fields are typically declared private. For more
on this matter, see the discussion of public and private in the next chapter. We will
return to the issue of shared state (e.g. when two or more people have access to the same
airport locker) in Chapter 20, Synchronization.

7.3.1.2 Whose Data Member Is It?

A second way in which fields differ from variables is that every field belongs to some
object. For example, in the Rectangle code, there's no such thing as width in the abstract.
Every width field belongs to some particular Rectangle instance, i.e., some object made
from the Rectangle class/factory/recipe.

224 Chapter 7 Building New Things: Classes and Objects

Because a field belongs to an object, it isn't really appropriate to refer to it without saying
whose field you are referring to. Many times, this is easy:

myRectangle.width

for example, if you happen to have a Rectangle named myRectangle. The syntax for a
field access expression is

 An object−identifying expression (often, but not always, a name associated with
the object), followed by

1.

 a period, followed by2.
 the name of the field.3.

You can now use this as you would any other name:

myRectangle.width = myRectangle.width * 2;

for example.

There is, however, a common case in which the answer to the question “whose field is
it?” may be an object whose name you don't know. This occurs when you are in a class
definition and you want to refer to the instance whose code you are now writing. (Since a
class is the set of instructions for how to create an instance, it is common to say “the way
to do this is to use my own width field...”)

In Java, the way to say “myself” is this. That is, this is a special name expression that
is always bound to the current object, the object inside whose code the name this
appears. That means that the way to say “my own width field....” is this.width.
(Note the period between this and width — it is important!)

7.3.1.3 Scoping of Fields

The final way in which fields differ from (local) variables is in their scoping. The scope
of a name refers to the segment of code in which that name has meaning, i.e., is a
legitimate dial or label. (If you refer to a name outside of its scope, your Java program
will not compile because the compiler will not be able to figure out what you mean by
that name.) A local variable only has scope from its declaration to the end of the
enclosing block. (A method's parameter has scope throughout the body of that method.)

A field name has scope anywhere within the enclosing class body. That means that you
can use the field name in any other field definition, method body, or constructor body
throughout the class, including the part of the class body that is textually prior to the field
declaration! For example, the following is legal, if lousy, Java code:

Chapter 7 Building New Things: Classes and Objects 225

class Square {
 int height = this.width;
 int width = 100;
 ...
}

This isn't very good code because (a) it's convoluted and (b) it doesn't do what you think
it does. Although this.width is a legal expression at the point where it's used, the value of
this.width is not yet set to 100. The result of this code is to set height to 0 and width to
100. The rule is: all fields come into existence simultaneously, but their initialization is
done in the order they appear in the class definition text.

A cleaner version of this code would say

class Square {
 int height = 100;
 int width = this.height;
 ...
}

226 Chapter 7 Building New Things: Classes and Objects

A Comparison of Kinds of Names

Scope Lifetime Default initialization
Class

or
Interface

Name

Everywhere within
containing program

or package.

Until program
execution
completes.

—−

Field
(Data

Member)

Everywhere within
containing class.

Lifetime of
object whose

field it is.

Label names: null

Dial names: value depends on
type.

Parameter
Everywhere within

method body.

Until method
invocation
completes.

Value of matching argument
expression supplied to method

invocation.

(Local)
Variable

From declaration to
end of enclosing

block.

Until enclosing
block exits.

Illegal to use without explicit
initialization (when declared

or in a subsequent
assignment).

[Footnote: The row for Class or Interface Name refers only to top−level (non−inner)
classes or interfaces. The scope and lifetime of an inner class is determined by the context
of its declaration. See Chapter 13, Encapsulation.]

7.3.2 Static Members

So far, we've said that fields belong to instances made from classes and that each instance
made from the class gets its own copy. Recall that the class itself is an object, albeit a
fairly different kind of object. (The class is like a factory or a recipe; it is an instance of
the class called Class.) Sometimes, it is useful for the class object itself to have a field.
For example, this field could keep track of how many instances of the class had been
created. Every time a new instance was made, this field would be incremented. Such a
field would certainly be a property of the class (i.e., of the factory), not of any particular
instance of that class.

The declaration for a class object field looks almost like an instance field. The only
difference is that class field declarations are preceded by the keyword static.

[Footnote: The choice of the keyword static, while understandable in a historic
context, strikes us as an unfortunate one as the common associations with the term don't
really accord with its usage here. In Java, static means “belonging to the class object.”
]

Chapter 7 Building New Things: Classes and Objects 227

For example:

class Widget {
 static int numInstances = 0;
 ...
}

In this case, individual Widgets do not have numInstances fields. There is only one
numInstances field, and it belongs to the factory, not the Widgets. To access it, you
would say Widget.numInstances. In this case, this.numInstances is not legal code
anywhere within the Widget class.

Style Sidebar

Field Documentation

In documenting a field, you need to indicate what that field represents conceptually
to the object of which it is a part. In addition, you should answer these questions as
appropriate:

 What range of values can this field take on?•

 What other values are interdependent with this one? For example, must this
field's value always be updated in concert with another field, or must its
value remain somehow consistent with another field?

•

 Are there any “special” values of this field that carry hidden meaning?•

 What methods (or constructors) modify this field? Which read this field?
What else relies on its value?

•

 Where does the value of this field come from?•

 Can the value of this field change?•

7.4 Methods

In Chapter 4, Specifying Behavior: Interfaces, we saw how method signatures describe
the name, parameters, and return type of a method. A method signature declared in an
interface ends in a semi−colon; this method specifies a contract, but doesn't say anything
about how it works. It is essentially a rule specification. This kind of method — a

228 Chapter 7 Building New Things: Classes and Objects

specification without an implementation — is called abstract.

Classes specify more than just a contract. Classes also specify how their instances work.
In order for an instance to do be able to do something, its class must give more than the
rule specification for its methods. An instance needs the rule body for its methods.
Classes must supply bodies for any methods promised by the interfaces that they
implement. They may also supply additional methods with their own signatures and
bodies.

Methods can be identified by the fact that a method name is always followed by an open
parenthesis. (There may then be some parameters, as discussed below; there will always
be a matching close parenthesis as well.)

7.4.1 Method Declaration

A method definition also follows the Type−of−thing Name−of−thing convention, but the
type−of−thing is the type that is returned when the method is called. So, for example, the
inside method in the definition of Rectangle, described earlier in this chapter, returns a
boolean value:

boolean inside(int x, int y) {
 ...
}

Inside the parentheses is the list of parameters to the method: calling pictureFrame.inside
on a particular x and y value returns true or false depending on whether the point (x,
y) is inside pictureFrame. For example,

pictureFrame.inside(120, 83)

returns true if (120, 83) is inside pictureFrame, and false otherwise.

Remember that the inside method only exists with reference to a particular Rectangle —
it's always some object's method!

The list of parameters, like every other declaration, follows the Type−of−thing
Name−of−thing convention. Note, though, that while a regular variable definition can
declare multiple names with a single type, in a parameter list each name needs its own
type.

A few more notes on methods: If there are no parameters, the method takes no
arguments, but it must still be declared and invoked with parentheses:

pictureFrame.isEmpty()

Chapter 7 Building New Things: Classes and Objects 229

for example. If there is no return value, the return type of the method is void. Finally,
inside the body of the method, the parameters may be referred to by the names they're
given in the parameter declaration. It doesn't matter what other names they might have
had outside of the method body, or what else those parameter names might refer to
outside the method body. We'll return to the issue of scoping later.

Recall from previous chapters that the method definition as we've described it so far —
the return type and the parameter list — is also called the signature of the method. It tells
you what types of arguments need to be supplied when the method is called — it must be
possible to assign a value of the argument type to a variable of the parameter type — and
what type of thing will be returned when the method is invoked. It doesn't tell you much
about the relationships between the method's inputs and its outputs, though. (The
method's documentation ought to do that!)

Style Sidebar

Method Implementation Documentation

Documentation for methods in classes is much like the documentation for methods
in interfaces. However, class/object methods have bodies as well as signatures. In
addition to the usual documentation of the method signature (see the Style Sidebar
on Method Documentation in Chapter 4, Specifying Behavior: Interfaces), your
method documentation here should include:

 Ways in which this method implementation differs from or specializes the
documented interface method (signature).

•

 Information concerning the design rationale (why the method works the
way that it does), just as you would for any piece of Java code. For more
detail, see the Style Sidebar on Documentation in Chapter 6, Statements and
Rules.

•

7.4.2 Method Body and Behavior

This relationship — how to get from the information supplied as arguments to the result,
or return value — is the “how to do it” part of the method. Its details are contained in the
method body, which — like a class body — goes between a pair of braces. What goes in
here can be variable definitions or method invocations or any of the complex statements
that you will learn about later. You cannot, however, declare other methods inside the
body of a method. Instead, the method body simply contains a sequence of instructions
that describe how to get from its inputs (if any) to its output (if any), or what else should
happen in between.

230 Chapter 7 Building New Things: Classes and Objects

The body of a method is inside the scope of its parameters. That is, the parameter names
may be used anywhere within the method to refer to the corresponding arguments
supplied at method invocation time. The body of an instance method is also within the
scope of the special name this. Just as in fields, inside a method the name this refers to
the particular instance whose method this is. Static methods — methods belonging to the
class, as discussed in the next subsection — are not within the scope of this, though.
That is, you can't use the special name expression this in a static method.

In order to return a value from a method, you use a special statement: return. There are
actually two forms of this statement:

return (...);

returns a value (whatever is in the parentheses) from a method invocation. For example,

return (total + 1);

returns one more than the value of total, though it doesn't change the value of total at all.
The parentheses around the expression whose value is to be returned are in fact optional,
leading to the second form of return:

return;

is used to exit from a method whose return type is void, i.e., that does not return
anything.

Remember (from Chapter 5, Expressions: Doing Things with Things) that a method
invocation is an expression whose type is the return type of the method and whose value
is the value returned by the method. You make this happen (when you're describing the
method rule) by using an explicit return statement in a method's body. In Chapter 6,
Statements and Rules, we saw the execution rule for a method body and how it relates to
the evaluation rule for method invocation. This process is summarized in the sidebar on
Method Invocation and Execution at the end of this section.

7.4.3 A Method ALWAYS Belongs to an Object

A method is a thing that can be done (or invoked, or called). For example, a painting
program can draw a line, so drawLine could be the name of a method. Every method
belongs to a particular object. For instance, each getValue method belongs to a
particular ScoreCounter (or Stopwatch, or...) object; there is no such thing as an
independent getValue method. So, if myScoreCounter refers to a particular ScoreCounter,

myScoreCounter.getValue()

invokes myScoreCounter's int−returning method. You can't just call getValue. Whose
getValue method is it, anyway?

Chapter 7 Building New Things: Classes and Objects 231

Each time that you refer to a method, you should ask yourself whose method it is. You
can invoke a method by first referring to the object, then typing a period, then the method
name, as in

myScoreCounter.getValue()

Sometimes, the answer to “whose method is it?” will be “my own”, that is, the method
belongs to the object whose code is being executed. As with fields, the way to say
“myself” is with the special name expression this, so the way to say “my getValue
method” is

this.getValue()

Note the period between this and getValue() — it is important!

Generally, methods belong to instances of the class in which they're defined.
Occasionally, though, it may be useful to have a method that belongs to the class itself.
This corresponds to a property of the factory (or recipe), rather than one belonging to the
widgets (or cookies) produced. For example, a method that prints out the number of
widgets produced by the factory so far would be a method belonging to the factory, not
one belonging to any particular widget. Methods that belong to the class instead of to its
instances look just like regular methods, except that they are prefaced with the keyword
static. (This name is pretty unintuitive, though it makes some sense in its historical
context. Remember: In Java, static means “belonging to the class/factory/recipe itself,
not to its instances.”) A static method can be addressed by first citing the object it
belongs to, then period, then the method name, for example:

Widget.howManyWidgets()

A static method should not be invoked using keyword this, though, because it doesn't
belong to an instance. It is also possible to use keyword this by itself to refer directly to
the object whose method the name this appears in. For example:

JButton button = new JButton(“Press me”);
button.addActionListener(this);

declares and constructs a new JButton object and then says that “this object” (the one that
created the button) should listen for and respond to the event in which the user presses the
button.

7.4.4 Method Overloading

Just as in an interface, it is possible for a class to have multiple methods with the same
name. This is called method overloading, since the name of the method is overloaded —
it actually refers to two or more distinct methods — belonging to that object. In this case,
each method must have a different footprint, i.e., the ordered list of parameter types must

232 Chapter 7 Building New Things: Classes and Objects

differ for two methods of the same object with the same name.

When an object has an overloaded method, the particular method to be invoked is
selected by comparing the types of the arguments supplied with the footprints of the
methods. The method whose footprints best matches the (declared) types of the
arguments supplied is the one that is invoked. This matching is done using the same type
inclusion rules as the operator instanceof.

Chapter 7 Building New Things: Classes and Objects 233

Method Invocation and Execution

Method invocation is an expression; it is evaluated, producing a value. Within this
expression, the body of the method is treated as a block (sequence) statement to be
executed. This sidebar summarizes this process.

 Before the method invocation expression can be evaluated, the object
expression describing whose method it is must be evaluated. This object is
called the method's target.

1.

 Based on this object and the (declared) types of the argument expressions,
the method body is selected.

2.

 The argument expressions are evaluated and the method parameter names
are bound to the corresponding arguments. If the target is an instance (i.e., if
the method is not static), the name this is bound to the target as well.

3.

 Within the scope of these name bindings, the body of the statement is
executed as a normal block except for special rules concerning return
statements.

 If, at any point within the execution of the body, a return
statement is encountered, its expression (if present) is evaluated and
then the entire method body and the scope of parameter names and
this are exited upon completion of the return statement.

♦

 If the method has a return type other than void, the return
statement is mandatory and must include an expression whose type is
consistent with the return type. A suitable return statement must
be encountered on any normal execution path through the method
body. In this case, the value of the return expression is the value
returned by the method invocation expression.

♦

 If the return type of the method is void, the final closing brace of
the method body is treated as an implicit

return;

statement, i.e., a return with no expression. This has the effect of
exiting the method body and special name scope.

♦

4.

234 Chapter 7 Building New Things: Classes and Objects

7.5 Constructors

So, how do objects get created? Each class has a special member, called a constructor,
which gives the instructions needed to create a new instance of the class. (If you don't
give your class a constructor, Java automatically uses a default constructor, which
roughly speaking “just creates the instance” — details below. So some of the classes that
you see may not appear to have constructors — but they all do.)

7.5.1 Constructors are Not Methods

A constructor is sort of like a method.

 It has a (possibly empty) parameter list enclosed in parentheses.1.
 It has a body, enclosed in braces, consisting of statements to be executed.2.
 Inside the constructor body, this. expressions can be used to refer to methods
and fields of the individual instance under construction.

3.

There are several differences.

 The name of a constructor always matches the name of the class whose instances
it constructs.

1.

 A constructor has no return type.2.
 A constructor does not return anything; return statements are not permitted in
constructors.

3.

 A constructor cannot be invoked directly.4.

Instead, a constructor is invoked as a part of a new expression. The result of evaluating
this new expression is a new instance of the type whose constructor is evoked.

For example, class Pie might have a constructor as follows:

class Pie {

 Pie(Ingredients stuff) {
 stuff.bake();
 }
}

In other words, to create a Pie, bake its ingredients. Note that stuff is a parameter, just like
in a method. Constructor parameters work exactly like method parameters, and
constructors take arguments to match these parameters in the same way that methods take
parameters.

Chapter 7 Building New Things: Classes and Objects 235

But you don't invoke a constructor in the same way that you invoke a method. In order to
invoke a method, you need to know whose method it is. In order to use a constructor, you
only need to know the name (and parameter type list) of the constructor. You invoke a
constructor with a new expression as follows:

new Pie(myIngredients)

where myIngredients is of type Ingredients.

7.5.2 Syntax

The syntax of a constructor is similar to, but not identical to, the syntax of a method. A
constructor may begin with a visibility modifier (i.e., public, protected, or
private — see Chapter 8, Designing with Objects, for details) or one of a handful of
other modifiers. Next comes the name of the constructor, which is always identical to the
name of the class. The name is followed by a comma−separated parameter list enclosed
in parentheses. This parameter list, like the parameter list of a method, consists of
Type−of−thing Name−of−thing pairs. As in a method, the constructor name plus the
ordered list of parameter types forms the constructor's footprint. It is possible for a class
to have multiple constructors as long as they have distinct footprints.

After the parameter list, a constructor has a body enclosed in braces. This body is
identical to a method body — an arbitrary sequence of statements — except that it may
not contain a return statement. This is because constructors are not methods that can
be called and that return values of specified types; instead, a constructor is invoked using
a new expression whose value is a new instance of the constructor class's type. The
constructor body may contain any other kind of expression or statement, however,
including declarations or definitions of local variables.

modifiers ClassName (type_1 name_1, ... type_n name_n) {
 // body statements go here
}

For example, the NameDropper class might begin as follows. Note that the constructor
argument is used to initialize the private field, the particular name that *this*
NameDropper will drop.

236 Chapter 7 Building New Things: Classes and Objects

public class NameDropper extends StringTransformer {

 private String who;

 public NameDropper(String name) {
 this.who = name;
 }

 ...
}

Note the use of a this. expression to refer to the field of the particular NameDropper
instance being created. Also note that the class and its constructor are public, while the
field is private. We will see in Chapter 8, Designing with Objects, that this is a typical
style.

This constructor could be invoked using the expression

new NameDropper(“George”)

or

new NameDropper(“Lois”)

Figure 7.3. Two NameDroppers, each asked to transform the String “Hello”.

Chapter 7 Building New Things: Classes and Objects 237

Style Sidebar

Constructor Documentation

Although a constructor is not a method, documentation for a constructor is almost
identical to documentation for a method. Constructor documentation should
include:

 Specifics distinguishing this constructor from others.•

 Preconditions for using this constructor.•

 Parameters required and their role(s).•

 Relationship of the constructed object to parameters or other factors.•

 Side effects of the constructor.•

 Additional assumptions and design rationale as appropriate.•

7.5.3 Execution Sequence

Before a constructor is invoked, the instance is actually created. In particular, any dials or
labels declared as fields of the instance are created before the execution of any
constructor code. This permits access to these fields from within the constructor body. In
addition, any initialization of these fields — through definitions in their declarations — is
executed at this time as well. Fields are each created and then each initialized in textual
order, but all fields — even those declared after the constructor — are created and
initialized prior to the execution of the constructor.

[Footnote: There should be no such fields, declared after the constructor, because this
makes your code difficult to read and so is bad style. However, if any such declarations
are made, they still are executed prior to the constructor itself.]

Once each of the instance fields is created, execution of the constructor itself can begin.

When a constructor is executed, its parameters are matched with the arguments supplied
in the invocation (new) expression. For example, in the body of the NameDropper
constructor, the name name is identified with the particular String supplied to the
constructor invocation expression. So if the constructor were invoked with the expression

new NameDropper(“Terry”)

238 Chapter 7 Building New Things: Classes and Objects

the name name would be associated with the String “Terry” during the execution of
the body of the NameDropper constructor. When the statement

 this.who = name;

is executed, the value of the expression name is the String “Terry”.

Once each of the parameter names has been associated with the corresponding argument,
the execution of the statements constituting the constructor's body proceeds in order
(except where that order is modified by control−flow expressions such as if or while).
These statements may include local variable declarations; in this case, the name declared
has scope from its declaration to the end of the enclosing block, just as in a method.
When the end of the constructor is reached, execution of the constructor invocation
expression is complete and the value — the new instance — is produced.

Because a constructor body may not contain a return statement, it is not possible to
exit normally from any part of the constructor body except the end. Judicious use of
conditionals can simulate this effect, however.

7.5.4 Multiple Constructors and the Implicit No−Argument
Constructor

A class may have more than one constructor as long as each constructor has a different
footprint, i.e., as long as they have different ordered lists of parameter types. So, for
example, NameDropper might also have a variant constructor that took a descriptive
phrase as well as name:

public NameDropper(String name, String adjective) {
 this.who = adjective + “ ” + name;
}

In this case,

new NameDropper(“Marilyn Monroe”)

would create a NameDropper that started every phrase with “Marilyn Monroe says...”
while

new NameDropper(“Norma Jean”, “My dear friend”)

(i.e., NameDropper(String, String)) would attribute everything to “My dear
friend Norma Jean...”

Chapter 7 Building New Things: Classes and Objects 239

If — and only if — a class contains no constructors at all, a default constructor is
assumed present. This default constructor takes no arguments and does nothing beyond
creating the object (and initializing the fields if they are defined in their declarations).

If there is even one constructor, the implicit no−argument constructor is not assumed.
This means that if you define a constructor such as the one for NameDropper, above, that
takes a parameter, the class will not have a no−argument constructor (unless you define
one).

Beware: This can cause a problem when extending a class, if you're not careful. See
Chapter 10, Inheritance.

7.5.5 Constructor Functions

Often, one of the main functions of a constructor is to initialize the state of the instance
you're creating. Some initializations don't require a constructor; they can happen when
the field is declared, by using a definition instead of a simple declaration:

public class LightSwitch {
 private boolean isOn = false;
}

In this case, each LightSwitch instance is created in the off position. In this kind of
initialization, each instance of the class has its field created with the same initial value.

Contrast this with the following example, in which the initial value of the name field isn't
known until the particular Student instance is created.

public class Student {

 private String name;

 public Student(String who) {
 this.name = who;
 }
}

In this case, a constructor is used to initialize the field named name explicitly. When the
initial value of a field varies from instance to instance, it cannot be assigned in the field
declaration. Instead, it must be assigned at the time that the particular instance is created:
in the constructor.

240 Chapter 7 Building New Things: Classes and Objects

A constructor (or a method body) can also refer to properties of the class object itself.
Recall the Widget class, which kept track of how many instances had been created. When
the constructor is invoked, it can increment the appropriate field:

public class Widget {

 private static int numInstances = 0;

 public Widget() {
 Widget.numInstances = Widget.numInstances + 1;
 }

 public static int howManyWidgets() {
 return Widget.numInstances;
 }
}

Note that the constructor is not declared static — constructors don't properly belong
to any object — but that it refers to a static field. Note also that the static field is
referred to using the class name (Widget), not using this. We've also filled in the
static method referred to previously.

Finally, note that there is no explicit return statement in a constructor. A constructor is
not a method, and it cannot be invoked directly. Instead, it is used in a construction
expression, with the keyword new:

new Widget()

is an expression whose type is Widget and whose value is a brand new instance of the
Widget class, for example.

Question: Implement a Counter class which supports an increment (increase−by−one)
method. Where does the Counter's initial value come from?

Chapter 7 Building New Things: Classes and Objects 241

Style Sidebar

Capitalization Conventions

By convention, the first letters of all class and interface names are capitalized. Since
constructor names match their classes, constructor names also begin with capital
letters. Java file names also match the class (or interface) declared within, so Java
file names begin with a capital letter.

All other names (except constants) begin with lower case letters. In particular, the
names of Java primitive types begin with lower case letters, as do fields, methods,
variables, and parameters.

After the first letter, mixed case is used, with subsequent capital letters indicating
the beginnings of intermediate words: e.g., ClassName and instanceName.

The exception to the above conventions is the capitalization of constants (i.e., static
final fields; see Chapter 8, Designing with Objects). The names of constants are
entirely capitalized. Intermediate words are separated using underscores (_):
CONSTANT_NAME.

242 Chapter 7 Building New Things: Classes and Objects

Chapter Summary

 A Java class is a Java type.•

 Each (public, top level) class must be defined in a separate file whose name
matches the class name.

•

 An instance of a class is an object whose type is that class.•

 If a class implements an interface, its instances must satisfy the interface's
promises.

•

 Classes have methods, fields, and constructors.•

 In a class, methods typically have bodies specifying how to carry out the method.
(Otherwise, the method is abstract, and so is the class.)

•

 Every method belongs to some object. Unless declared static, a method
belongs to (each of) a class's instances, not to the class itself.

•

 A field declares (and perhaps also defines) a name whose scope is the class body
(i.e., any methods, fields, or constructors in the class body) and whose lifetime is
the lifetime of the instance it belongs to.

•

 Every field belongs to some object. Unless declared static, a field belongs to
(each of) a class's instances. Each instance has its own copy of the field, i.e., its
own unique dial or label with that field's name and type.

•

 In Java, this is a special name, bound in any non−static member, that refers to
the instance whose instructions are being followed. An instance can refer to its
own methods and fields by saying this.methodName(...) or
this.fieldName, or to itself by the name expression this.

•

 A constructor gives instructions for how to create an instance of the class.•

 The class itself is an object. (It is an instance of the class Class.) Fields and
methods declared static belong to the class object itself and are properly
referred to using ClassName.methodName(...) or
ClassName.fieldName.

•

Chapter 7 Building New Things: Classes and Objects 243

Exercises

 Consider the following definition:

public class MeeterGreeter {

 private String greeterName;

 public MeeterGreeter(String name) {
 this.greeterName = name;
 }

 public void sayHello() {
 Console.println(“Hello, I'm ” + this.greeterName);
 }

 public void sayHello(String toWhom) {
 Console.println(“Hello, ” + toWhom
 + “, I'm ” + this.greeterName);
 }

 public String getNameWithIntroduction(String toWhom) {
//****

 this.sayHello(toWhom);
 return this.greeterName;
 }
}

Now assume that the following definitions are executed:

MeeterGreeter pat = new MeeterGreeter(“Pat”);
MeeterGreeter terry = new MeeterGreeter(“Terry”);

 What is printed by

pat.sayHello()

What is returned? Which method is invoked?

a.

 What is printed by

new MeeterGreeter(“Chris”).sayHello(“Terry”)

What is returned? Which method is invoked?

b.

1.

244 Chapter 7 Building New Things: Classes and Objects

 What is printed by

terry.sayHello(“Pat”)

What is returned? Which method is invoked?

c.

 Assume that the expression

pat.getNameWithIntroduction(“Chris”)

is being evaluated. What would the value be of each of the following
expressions if they were to appear at the place where the comment
//**** appears?

toWhomi.

this.greeterNameii.

nameiii.

this.sayHello()iv.

new MeeterGreeter(“Pat”)v.

this.getNameWithIntroduction(toWhom)vi.

d.

 Now consider the following modification of the MeeterGreeter code. Assume
that we add the field definition

private static String greeting = “Hello”;

We will want to make several other modifications to the MeeterGreeter code, as
follows.

 Write a changeGreeting method that allows a user to change the greeting
string.

 What parameters should this take?i.
 What should it return?ii.
 What should its body say?iii.
 To which object should this method belong?iv.

a.

 Write an expression that invokes the changeGreeting method that you
have written.

b.

 Next, modify the sayHello methods to replace the fixed string “Hello”
with a reference to the greeting field. Whose greeting field is it?

c.

2.

Chapter 7 Building New Things: Classes and Objects 245

 Define a class whose instances each have one method,
rememberAndReturnPrevious, that takes a String and returns the String it was
previously given. Supply the first return value through the instance creation
expression. Give an example of your code in use.

3.

246 Chapter 7 Building New Things: Classes and Objects

Part 3

Refining Designs

248 Part 3 Refining Designs

Chapter 8

 Designing with Objects

Chapter Overview

 How do I design using objects and entities?•

In the preceding chapters, we have seen how interfaces specify contracts and how classes
implement them. We have used expressions and statements to create instructions that
describe the processes of performing actions, making up method and constructor bodies.
And we have used names to retain an object's state even while none of the object's
methods is executing. In this chapter, we turn to the question of how we design systems
using these various tools.

The first part of this chapter looks at one simple example to illustrate how the fields and
methods of an object can be identified and implemented. Although the example is small,
the principles described here are general and will be used in the design of any
object−oriented program. This example also provides an opportunity to look briefly at the
question of privacy, or how an object separates internal information from information
that it makes available to other objects.

The next section of this chapter turns to look at three important kinds of objects that
appear in many systems. These kinds of objects — data repositories, resource libraries,
and traditional objects — each play distinctly different roles in any system, and their
designs reflect these roles. A fourth distinct kind of object — animate objects — is the
topic of the next chapter.

The chapter concludes with a discussion of the ways in which different objects and types
are interrelated.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To become familiar with the identification of objects, methods, fields, interfaces,
and classes from a problem description.

1.

 To recognize common kinds of objects and the roles that they play.2.

 To learn to identify opportunities to use these patterns in designing systems.3.

8.1 Object Oriented Design

So far, you've seen a lot of Java how−to: how to declare, define, assign, and invoke
variables of primitive and object types, classes, object instances, methods, and control
flow. Now that you have some fluency with the basic building blocks of Java, it is time to
start looking at why each of these constructs is used and how they are combined to build
powerful programs. In this chapter, we'll look at objects and classes; in the next, we'll
continue this discussion by focusing on instruction−followers and self−animating objects.

8.1.1 Objects are Nouns

When you are constructing a computational system, you need to build pieces of code to
play various roles in the system you're constructing. To a first approximation, you can do
this by writing down a description in English of the system and the interactions you want
to have with it (and that you want its parts to have with one another), then mapping these
things onto elements of Java. When you do this, you will find that Java objects
correspond roughly to the nouns of your description.

To be a bit more precise, Java objects are things in your computational world, but not all
of the things are Java objects. Some of the things will have primitive types — numbers,
for example, will probably be doubles or ints — but most of the things that are
important enough to represent and complex enough that Java doesn't have a built−in type
for them will be objects in your world. This means that you will have to define a Java
class which describes what this type of object is (more below).

For example:

 A counter has a number associated with it. When it starts out, the number is 0.
You can increment the counter, and each time you do so, the number goes up by
one. At any time, the counter can also be asked to provide the current value of its
associated number.

•

250 Chapter 8 Designing with Objects

The nouns in this paragraph are counter and number. (And you, but we'll assume that you
either refers to the user, which we don't need to implement, or to some other component
outside of the current system.) The counter will be a Java object; we can use an int for
the number since it isn't asked to do anything, just to be there.

8.1.2 Methods are Verbs

When you write down your description, you will also find that there are lots of things that
these objects do to/with/for one another, or that you want to do to/with/for them. These
things correspond to the verbs in your English description, and they are the methods of
your Java objects. Every verb has a noun associated with it — its subject — and every
Java method belongs to some object.

In our basic counter example, the verbs are increment (and its alternate form, goes up by
one) and provide (as in “provide the current value”). Increment is something you need to
be able to do to the counter object. We could handle provide in either of two ways: we
could give the counter someone or something to provide the value to, or we could ask it.
We will adopt the second of these options, though we will return to the first option in the
chapter on Communication Patterns. This means that the counter object is going to have
to have (at least) these methods.

8.1.3 Interfaces are Adjectives

Interfaces and classes are both types. How do you know when to use which one? As a
general rule of thumb, names (including parameters, fields, and local variables) should
generally be declared using an interface type whenever possible. Constructor expressions,
of course, require a class type.

Interfaces are good at capturing commonality. It is almost always useful to define an
interface corresponding to the set of features of your objects that would hold for any
implementation of them. For example, the need for any counter to have an increment
method and a getValue method makes these good properties to encapsulate in an
interface. No matter how we implement the counter, these method properties will hold. In
contrast, the fact that most counters will keep track of their value using a field (perhaps
even an int field is an implementation−specific detail that cannot be expressed in an
interface. An interface talks about what an object can do, not about how it accomplishes
these tasks.

A Counting interface might say:

Chapter 8 Designing with Objects 251

interface Counting {
 void increment();
 int getValue();
}

Why would we use this? By referring to any actual counters by their interface type —
Counting — rather than their implementation types, we make it possible for the
implementor to modify details of the implementation — or, even, to change which
underlying implementation we're using — without changing the code that uses it. We
also avoid committing to any specific aspects of the implementation — such as the
representation of the current value through a long or a double or even a String — that
really shouldn't matter to the user of the class.

The name of this interface is only moderately adjectival, but most interfaces are named
using adjectives. For example, we have seen Resettable and will soon see Animatable,
Runnable, and Cloneable. We could almost call Counting Incrementable instead.

8.1.4 Classes are Object Factories

So if the nouns are objects, the verbs are methods, and the interfaces are adjectives, what
is left for the classes? Java classes are kinds of objects. They correspond, roughly, to
machines (or factories) that tell you (or Java) how to make new objects, not (necessarily)
to anything explicitly in your English description.

For example, the class BasicCounter is something that tells Java how to make a new
BasicCounter. It doesn't appear explicitly in the English description, but parts of the
description are about it and other parts imply things about what it must say. The phrase
“When it starts out, the number is 0” talks about initial conditions for BasicCounter
objects; the class is the thing responsible for establishing these (since it is the factory
where Counters are made).

For that matter, the class is responsible for establishing what the parts of an object are.
“Parts” here refers to methods and fields. What are the pieces of a BasicCounter object?
In this case, its number (and maybe an associated display). What are the things a
BasicCounter can do (or that we can do with/to a BasicCounter)? Increment and provide
its value, at least. So the BasicCounter will most likely include a number field (which is
going to be of type int), as well as methods corresponding to incrementing and
value−providing. It will also initialize the number field to 0.

Question: Is this a static or dynamic initialization? Where does it take place?

252 Chapter 8 Designing with Objects

Picture of counters

Figure 8.1. Counters.

Style Sidebar

Class and Member Documentation

This list summarizes many of the main features that good documentation will
capture about classes and their members. For more detail, see the specific
documentation sidebars in the previous chapter.

 Methods
 parameters: type and role♦
 return value: type and role♦
 function: why you'd do it♦
 “side effects”: what else it does (esp. values changed)♦

•

 Fields
 type and role♦
 how it changes & which methods use/change it♦
 constraints and interdependencies♦

•

 Constructors
 parameters: type and role♦
 relation of parameters to the particular instance produced♦
 “side effects”: what else it does (esp. values changed)♦

•

 Class
 its interface, especially key methods and fields & how they interact♦

•

Chapter 8 Designing with Objects 253

8.1.5 Some Counter Code

Here is a very basic implementation of the counter class:

class BasicCounter implements Counting {
 int currentValue = 0;

 void increment() {
 this.currentValue = this.currentValue + 1;
 }

 int getValue() {
 return this.currentValue;
 }
}

Some notes on this code:

 The class is a factory for making BasicCounters. Its body talks about what each
individual BasicCounter looks like, not about the factory itself.

•

 Each individual BasicCounter has its own currentValue field. Each one starts out
with the value 0, but they can change independently: each currentValue field
belongs to a specific BasicCounter.

•

 We haven't included a constructor because, in this case, Java's default constructor
does what we want. This is in general true when there is no dynamic initialization
(each instance starts out in the same state).

•

 The increment and getValue methods are methods that belong to each
BasicCounter instance. In each case, they refer to the currentValue field of that
BasicCounter instance. We note this by using the java keyword this.

•

Someone wanting to use a BasicCounter could now do so by invoking an instance
creation expression with this BasicCounter factory:

new BasicCounter()

This expression is probably more useful if we embed it inside another expression or
statement, e.g.,

Counting myCounter = new BasicCounter();

Note the use of the interface type when declaring the name, but the class type within the
construction expression.

254 Chapter 8 Designing with Objects

Now we can ask myCounter to increment itself or to give us its value:

myCounter.increment();
Console.println(myCounter.getValue()); // prints 1
myCounter.increment();
myCounter.increment();
myCounter.increment();
Console.println(myCounter.getValue()); // prints 4

Final

A name in Java may be declared with the modifier final. This means that the value
of that name, once assigned, cannot be changed. Such a name is, in effect, constant.

The most common use of this feature is in declaring final fields. These are object
properties that represent constant values. Often, these field are static as well as
final, i.e., they belong to the type object rather than to its instances. Making a
constant static as well as final makes it easy for other objects to refer to this value. It
is appropriate for static final fields to be declared public and to be accessed
directly by other objects. Static final fields are the only fields allowed in interfaces.

In addition to final fields, Java parameters and even local variables can be declared
final. A final parameter is one whose value may not be changed during the
execution of the method. A final variable is one whose value is unchanged during
its scope, i.e., until the end of the enclosing block.

[Footnote: Final fields and parameters are unnecessary unless you plan to use inner
classes. They may, however, allow additional efficiencies for the compiler, and in
any case they cannot be detrimental.]

Java methods may also be declared final. In this case, the method cannot be
overridden in a subclass. Such methods can be inlined by the compiler, i.e., the
compiler can make these methods execute more efficiently than other non−final
methods. A static method is implicitly final. An abstract method may not be
declared final.

Java classes declared final cannot be extended (or subclassed).

8.1.6 Public and Private

When we defined the BasicCounter class, we intended that the rest of the world would
interact with its instances (things produced by the BasicCounter factory) only through

Chapter 8 Designing with Objects 255

increment and getValue. But there is nothing about the code we've written that prevents
someone from defining a BasicCounter name and then changing the value of that
BasicCounter instance's currentValue field. For example, it would be perfectly possible
for another object to say

BasicCounter anotherCounter = new BasicCounter();
anotherCounter.currentValue = anotherCounter.currentValue + 1;

instead of

anotherCounter.increment();

This would be rather rude of it (and very bad style), but it is technically possible and
unfortunately done all of the time. Using the interface type — Counting — rather than the
class type — BasicCounter — is one way to avoid this, and this is yet another reason why
it is generally better to use the interface type. But as the implementor of BasicCounter,
we can't require that it always be treated as a Counting instead of as a BasicCounter.
Further, coercion (such as (BasicCounter) myCounter) will get you around the
interface−associated name.

[Footnote: Specifically, it would be legal, if longwinded, to say

((BasicCounter) myCounter).currentValue =
 ((BasicCounter) myCounter).currentValue + 1;

]

Class designers don't always get to choose how users of the class will interact with it or
as what type they'll choose to treat it.

We can take a stronger position on the matter of direct field access, though. We can, in
fact, prevent direct field access by protecting the currentValue field of each
BasicCounter instance. We do this by changing the declaration of the field in
BasicCounter:

class BasicCounter {
private int currentValue = 0;

 void increment ...
}

By making currentValue private to class BasicCounter, only the instance of BasicCounter
itself can access the currentValue field. Now, this rudeness on the part of the calling
object would simply be impossible. (The compiler would complain that the calling object
could not access BasicCounter's private field currentValue.)

256 Chapter 8 Designing with Objects

In general, it's a good idea to define fields as private when you don't want them to be
accessed directly by other objects. You can also define private methods, which are
generally things an object uses for its internal computations but not intended to be used
from outside the object. Private things are a part of the class's or its instances' own
internal representations and machinations; they are not to be shared.

Any member, not just a field or a method, can be private. You can even define private
constructors. Although this may seem like an odd thing to do, it actually isn't all that
strange. It means that the class object (along with any instances it creates) maintains
complete control over whether and when new instances can be created. The class can
refuse to create any instances, or it can create just one instance and return this any time
someone asks for a new one (using a special method the class defines for this purpose,
such as getInstance, not the (private) constructor), or it can ask for the secret password
before creating an instance if it (or its designer) wants to.

The opposite of private is public. You should declare things public when you want
them to be accessible from any part of anyone's code. You can also declare classes and
interfaces to be public, in which case they must be defined in a file whose name is the
same as the name of the class or interface, plus .java.

If you don't declare something private or public, it is in an intermediate state. There are
actually two intermediate states, protected and the default state. These two are in fact
equivalent to one another and to public unless you use packages, a Java feature that we
will explore in the chapter on Abstraction. Until then — until you are building complex
enough code that you need to subdivide it at finer levels than all−or−none — you should
use public and private all of the time, i.e., everything in your code should be one or the
other.

8.2 Kinds of Objects

Objects are the nouns of programming: the people, places, and things. Nouns do a lot of
different things in the world and, similarly, objects do a lot of different things in
programs. In this section, we take a closer look at several kinds of objects, their typical
construction, and why you might use them. The objects discussed here are all relatively
passive; they do nothing until asked. In the next chapter, we go on to look at active
objects, objects that have their own instruction followers.

8.2.1 Data Repositories

A data repository is a very simple object that exists solely to hold a set of interrelated
data. The data repository object simply glues these things together, providing a
convenient way to deal with the grouped data as a single unit.

One example of a data object might be a postal address. This might consist of a street
address, a city or town, a state or province, a postal code, and a country. There isn't really

Chapter 8 Designing with Objects 257

much that you would do with an address, other than pull out the individual pieces or
maybe modify one or more of the pieces. (For example, the postal service just changed
my postal code, so although my address object stayed the same, its postal code field
needed to change.) The whole address is useful and meaningful in a way that the pieces
individually are not, so it is often convenient to be able to package these pieces together
and to pass the address object around as a single unit.

Picture of address object

Figure 8.2. An Address object.

Here is some code for a very simple address object. Note that this code has some
aesthetic problems, which we will address shortly.

public class OversimplifiedAddress {
 public String streetAddress,
 city,
 state,
 postalCode;

// Problems with this class:
 // — Non−final fields ought not to be public.
 // — Fields ought to be initialized
 // by (missing) constructor or default.
}

Like instances of this OversimplifiedAddress class, data repository objects exist to hold a
collection of pieces together. Typically, each of these pieces is represented by a field of
the object. The simplest form of data repository object is one — like an instance of the
Oversimplified Address class — that has a set of public fields and nothing else. However,
this form is not recommended.

One object should never access another object's fields directly. Instead, an object
should provide methods for accessing its fields.

258 Chapter 8 Designing with Objects

[Footnote: Actually, this should read “One object should never access another object's
non−final fields directly.” Final fields are in effect constants; the reasons for objecting to
field access do not apply to read−only accesses to a constant.

Also, if you are concerned about the overhead of invoking a method: Where “getter”
methods are simply long−winded ways of doing field access, a good compiler should be
able to inline this code, which means that it replaces the method invocation with direct
access to the field data when the code is translated to machine code. In Java, such inlining
can be demanded by declaring the getter method to be final.]

In our simple address object, we violated this rule. To fix that class definition, we should
instead make each of these fields internal to the object. So that other objects can access
these fields, we need to provide getter and setter methods to access them. A getter
method is a method that returns the value of a field. A setter method is one that has a
single parameter, the new (desired) value of the field; evaluating this method modifies the
state of the object to reflect this new value. Getter methods are sometimes called
selectors and setter methods are sometimes called mutators. It is common to use the
name of the field prefixed with get as the name of the getter method and the name of the
field prefixed with set as the name of the setter method.

Note that getter and setter methods need not correspond one to one with fields. Instead, a
setter method may change the value of more than one field; a getter value may return an
object that encapsulates more than one field value. Alternately, a getter or setter may
make reference to an apparent field that doesn't actually exist per se.

We can improve the address class by modifying it to use getter and setter methods. Only
one pair of these methods is shown here, although the complete class definition would
presumably contain four pairs of getter and setter methods.

Chapter 8 Designing with Objects 259

public class BetterAddress {
private String streetAddress,

 city,
 state,
 postalCode;
 ...

 public void setPostalCode(String code) {
 this.postalCode = code;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

// Remaining problems with this class:
 // — Fields ought to be initialized
 // by (missing) constructor or default.
}

Why shouldn't one object access the fields of another directly? (Why should you use
getter and setter methods?)

 Methods separate use from actual (internal) representation. The user of a class
shouldn't need to know (or care) how information is actually represented inside
the class. For example, US postal codes are commonly written as five−digit
numbers. A different implementation of addresses intended for use only in the US
might actually represent the postalCode field using an int instead of a String.
The getter and setter methods of this USAddress object could do the conversion
for the user:

public String getPostalCode() {
 return new String(this.postalCode);
}

We might have an interface (say, GeneralizedAddress) containing (an abstract
version of) this method. Both USAddress and BetterAddress classes could
implement the GeneralizedAddress interface, even though they use different
internal representations.

Another variant of separating use from actual representation involves getter
and/or setter methods for fields that don't actually exist. For example, it might be
useful for these address objects to have a getAddressLabel field, which would
return the multiline String containing the complete address suitable for printing on
an envelope. This getter method would automatically calculate the appropriate
value from the individual fields of the address object; there is no actual field
corresponding to the information that this getter field provides.

1.

260 Chapter 8 Designing with Objects

public String getAddressLabel() {
 return new String(this.streetAddress + “\n”
 + this.city + “, ”
 + this.state + “ ”
 + this.postalCode + “\n”
 + this.country);
}

Getter and/or setter methods like this one, which do not correspond to any actual
field of the object, are sometimes called virtual fields. To the user of the object, it
looks as though there's a field there. Whether that field actually exists or just
looks like it is nobody's business but the implementing object's.

 Methods can provide additional behavior, including access control and error
checking. For example, BetterAddress could be augmented with an internal list of
the states or provinces within each country. If the setter method were given an
argument that didn't match one of the appropriate values, it could report an error.
The most extreme case of this is a read−only field, one in which no non−private
setter method is supplied. This prevents a user of the object from ever modifying
the value of that field.

[Footnote: Note that a read only field is different from a constant (final) field. A
read−only field can be changed by its owning object, but not by anyone else. A
final field's value, once set, cannot be changed. This is enforced by the Java
compiler.]

Another example of augmenting the behavior of a setter might involve
automatically filling in the city and state whenever a postal code is entered. The
postal code's setter method could look up the appropriate city and state
information based on the postal code supplied and propagate this information to
these other fields as well, saving the user the work of providing this information
separately. (Some mail order companies do this now: you give them your postal
code, and they tell you what city and state you live in!)

2.

There are other reasons why methods, rather than fields, are a good idea. Some of these
involve issues that will not be discussed until later in this book. For example, if you are
using inheritance (Chapter 10, Inheritance), methods give you additional flexibility and
more appropriate behavior than fields. There are also issues that arise when two or more
people try to use the same things at the same time (covered in Chapter 20,
Synchronization); the tools that you can use to address these issues generally rely on
methods rather than fields.

One of the most common reasons for a pure data repository class is to allow simultaneous
return of multiple interrelated values. An example of this type is the Dimension class in
the java.awt package. This class exists so that its instances can hold both (horizontal and

Chapter 8 Designing with Objects 261

vertical) coordinates, e.g., of a window size. This allows them to be simultaneously
returned from a method such as Window's getSize method. If getSize weren't able to
return a data repository type such as Dimension, you'd first have to invoke a method that
returned the Window's horizontal dimension, then one that returned its vertical
dimension. If the Window's size changed in between these two method invocations, your
two individual dimension components would combine to produce a nonsensical value!

Pure data repository objects are actually quite rare in good object−oriented design. This is
because most objects do more than hold some state. The extensions we've described
above, including propagation of changes, virtual fields, and access control already begin
to expand the data repository idea. In the next subsection, we look at objects that exist to
provide behavior without state. In the following subsection, we will return to objects that
contain both data and more interesting behavior.

8.2.2 Resource Libraries

We have seen objects that hold together an interrelated set of data. Sometimes, an object
exists to hold together an interrelated set of methods. If these methods are not tied to any
particular state of the world, they may usefully be grouped together within a (generally
non−instantiable) class that exists solely for this purpose. Consider, for example, the
square root function. It is a useful function, and it is often convenient to have it lying
around. But, in Java, any function must be a method belonging to a particular object. Java
has a square root method; but whose method is it?

The answer to this question is that sqrt belongs to a special class called Math. Math is a
class that exists precisely so that you can use its methods, like sqrt. Math is a canonical
function library; it has no use beyond being the place to find its member functions. It
exists to provide the answer to the question, “Whose method is sqrt?”

Because Math is a place to find these functions, it is not a class of which you would want
to make instances. Instead, Math has only static methods and static fields. This means
that you can use its methods and data members through the class object (Math) itself. For
example, a typical method is Math.sqrt(double d), which takes a double and returns a
double that is the square root of its argument. Without the Math class to collect it and
other mathematical functions, it is hard to imagine to whom this sqrt function could
belong. Math exists so that there is a place to collect sqrt and a number of other abstract
mathematical functions.

The Math class has static methods for the trigonometric functions, logarithms and
exponentiation, various flavors of rounding, and very simple randomization. Math also
has two (static final, i.e., constant) fields: E and PI, doubles representing the
corresponding mathematical constants. See the sidebar on Math for details.

Question: Since it's not instantiable, why couldn't Math be an interface?

262 Chapter 8 Designing with Objects

Math — the class, with its static methods and fields — is a very useful class. However, it
wouldn't make sense to create any instances of it. In fact, Math has no publicly available
constructor. This is a common way to prevent a class from being instantiated: give it only
a private constructor. In general, a resource collection is the kind of object of which
wouldn't have any use for multiple copies.

Another resource collection class is cs101.util.Console. Console — documented in a
sidebar in the chapter on Things, Types, and Names — provides console input and output
through the print, println and readln methods. These, too, are static methods of the class;
you don't need to create a Console instance before using these methods. (In fact, like
Math , Console is a class of which you can't create instances.) The resources provided by
cs101.util.Console (streams) are a bit more complicated than the resources provided by
java.lang.Math, and in the chapter on networking and I/O we will explore these issues in
greater detail. The Console class is describe more completely in a sidebar of chapter 3.

Other classes that provide static collections of resources (whether functions or otherwise)
include java.lang.System, cs101.util.MoreMath, and cs101.util.Coerce.

class Math

The built−in Java class Math may be the canonical resource library. It contains two
(static final) fields, Math.E and Math.PI, both doubles, corresponding to the
mathematical constants e and pi, respectively.

Math also contains a host of useful mathematical functions, again all static. Each of
the following methods takes a double as an argument and returns a double:

cos cosine of its argument acos arc cosine of its argument

sin sine of its argument asin arc sine of its argument

tan tangent of its argument atan arc tangent of its argument

exp
Math.E raised to the power of
its argument

log
Logarithm base Math.E of its
argument

sqrt square root of its argument ceil

smallest double
corresponding to an integer
value that is larger than its
argument

floor
largest double corresponding
to an integer value that is
smaller than its argument

rint
the double corresponding to
the integer value nearest its
argument

Chapter 8 Designing with Objects 263

Math.abs takes a double, a float, a long, or an int, and produces a value of
the same type as its argument that is guaranteed to be non−negative.

Math.max and Math.min each take two arguments of the same type (both double,
float, long, or int). The Math.max method returns the larger of its arguments;
Math.min the smaller.

Math.round takes a double and returns the long closest in value to its argument.

Math.pow takes two doubles and yields the value of the first raised to the power
of the second. That is, Math.pow(base, exponent) produces base exponent.

Math.random takes no arguments and returns a double equal to or larger than 0.0
and strictly smaller than 1.0.

There are a few other Math methods not included here. In addition, there are extra
mathematical functions (including more flexible and powerful randomization)
available in the package java.math. For these additional methods, see the Java API
documentation on the Javasoft web site.

8.2.3 Traditional Objects

Some objects, like data repositories, exist primarily to bundle together certain pieces of
data. Other objects exist primarily to hold stateless, general−purpose functional behavior.
Most objects fall into neither of these categories. Instead, most objects represent things
with both state — what happens to be true of them Right Now — and behavior — how
that object can change over time. Some of these objects, like Windows, Buttons, and
Menus, have visual manifestations. Other objects, like the ones that represent Strings or
URLs, are more obviously internal to programs. Many of the objects that you create will
be of this kind.

A String is an object that keeps track of the sequence of characters of which it is
composed, so somewhere inside the String object must be data that corresponds to those
characters. But a String is not simply a data repository; it has a diverse set of methods.
What kinds of things might you want to do with a String? Certainly look at some of the
characters, which you can do using the String's charAt method. Java's String class
provides additional methods, though, which allow you to do more than simply look at
parts of the String. For example, there is toUpperCase, which returns a String just like the
one whose method you invoke, but with all letters in upper case. (For example, “Hi
there”.toUpperCase() returns a String that would print out as “HI THERE”.)
String's toUpperCase method is neither a selector nor a mutator. More complete
descriptions of the String class and its methods are included in the sidebar on the String
class in Interlude A.

264 Chapter 8 Designing with Objects

http://www.javasoft.com/

Another kind of traditional object that we've seen is a counter. This object has internal
state (whatever the current count is set to) and methods providing access to this state
(e.g., increment and getValue. The methods can't work without the state; the state isn't
directly accessible, but provides the basis for method behavior. This is an extremely
typical kind of object.

Here is some code implementing a slightly more sophisticated Counter class than the one
described at the beginning of this chapter. In addition to the functionality provided by
that BasicCounter class, this class implements the Resettable interface, i.e., provides a
reset method.

public class Counter implements Counting, Resettable {
 private int currentValue;

 public Counter() {
 this.reset();
 }

 public void increment() {
 this.currentValue = this.currentValue + 1;
 }

 public void reset() {
 this.currentValue = 0;
 }

 public int getValue() {
 return this.currentValue;
 }
}

The two methods — increment and reset — rely on the current state (count) of the
individual instance whose methods they are. Two different counters can have two
different states (e.g., one can have count 4 and the other count 27). Incrementing the first
will have a different effect (producing 5, etc.) from incrementing the second (which
produces 28). Resetting one will not reset the other. The increment and reset methods
make no sense without reference to the particular counter instance they're incrementing
or resetting. This relationship between state (data members) and methods is typical of
“traditional” objects.

Chapter 8 Designing with Objects 265

Picture of multiple counters

Figure 8.3. Several Counters, each with its own state.

Traditional objects are exemplified by the following properties:

 Each instance has its own state.•

 This state is not directly accessible. Instead, it provides the basis for method
behavior.

•

 Method behavior is dependent on the internal state of a particular instance.•

 State plus behavior, packaged together, provide a single logical unit.•

8.3 Types and Objects

8.3.1 Declared Type and Actual Type

What happens when we take an object of one type and treat it as though it had another
type? One common example of this that we've seen is using an interface−type name to
hold an object. The object is an instance of some class. The name says that it's in instance
of some interface. The interface provides a much more limited view of the object than the
actual implementation. Does this change the object? What happens when we ask whether
the object is an instanceof its class, for example.

The answer is that the object is the same object no matter what its declared type (e.g. the
declared type of the name that may be holding it, or of the method that may return it, or
wherever else its type may be declared). It can do all of the same things regardless of its
declared type. And it responds the same way when asked whether it is an instanceof its
class, regardless of whether its declared type is some more specialized interface.

266 Chapter 8 Designing with Objects

For example, if we take an instance of the Counter class defined above, with its reset,
increment and getValue methods, and assign it to a name of type Counting (an interface
with only increment and getValue methods), we haven't actually changed the Counter
instance:

Counting count = new Counter();

If we ask whether

count instanceof Counter

this is true. Of course

count instanceof Counting

is also true. But

count instanceof BasicCounter

is false, given the definitions earlier in this chapter.

Using a Counting name instead of a Counter name does have some effect, though. First,
we may not know about the Counter type. In this case, we are limited to treating count as
though it were a Counting, not a Counter. For example, we couldn't call its reset method,
because Countings don't have reset methods. Even if we did know about Counters, we'd
have to explicitly cast count to be a Counter before we could use its Counter−specific
properties:

((Counter) count).reset();

So an interface provides a limited view without limiting the actual object.

8.3.2 Use Interface Types

When declaring names and otherwise using objects, you should generally use interface
types rather than class types. This allows the implementation of objects to vary
independently of their use. It also allows different versions of the object to be used
without dependence on unnecessary or possibly mutable properties. An interface allows
common behavior to be abstracted and relied on. An interface can also be used to allow
for future abstraction and variation, such as the Counting interface that allowed for the
creation of a Timer.

For example, suppose that we are building a video game. The outer window of the video
game is likely to be the same whether the game is Pong or Battleship or SpaceInvaders. It
has controls such as start, stop, reset, and pause. What exactly happens when these
controls are invoked depends on the particular game that is displayed in this window. But

Chapter 8 Designing with Objects 267

we want to build a generic DefaultGameFrame window that doesn't have to rely on the
particular type of game that it will hold. We can accomplish this by using an interface.

public interface GameControllable {
 public void start();
 public void stop();
 public void reset();
 public void pause();
 public void unpause();
}

Now, the DefaultGameFrame can refer to the game using the type GameControllable. As
long as Pong or Battleship or SpaceInvaders implements GameControllable, any of these
games can be used inside the DefaultGameFrame. When the DefaultGameFrame's reset
control is invoked, DefaultGameFrame simply calls its GameControllable's reset method.
If the GameControllable happens to be Pong, it will bring the paddles back to rest and set
the scores to 0. If the GameControllable is SpaceInvaders, the player will begin again
with a full set of ammunition and plenty of aliens to shoot.

8.3.3 Use Contained Objects to Implement Behavior

One object can use another to provide behavior on the first object's behalf. For example,
we might have a Clock object that provides a getTime method and a setTime method. We
might also have a VCR object that includes among its functionality getTime and setTime.
Should the VCR implement its own getTime and setTime methods? This seems awfully
inefficient. Or should the VCR reuse the Clock's getTime and setTime methods directly?
(We will see a mechanism by which this can be accomplished in the chapter on
Inheritance.) The problem with this solution is that the VCR isn't really a Clock (or a kind
of Clock). Instead, the VCR can provide these methods by having a Clock inside it.

For example, the code for the VCR might say (in part):

268 Chapter 8 Designing with Objects

public class VCR {

 private Clock clock;

 public Time getTime() {
 return this.clock.getTime();
 }

 public void setTime(Time t) {
 this.clock.setTime(t);
 }

 ...
}

In this way, the VCR provides access to the Clock's methods indirectly. This reuse of
behavior by inclusion is a very powerful mechanism. In this case, the VCR might be
providing access to the full set of Clock's methods. In another case, the including class
might only provide a subset of the included class's methods, or it might provide a
superset by combining those methods in different ways. The including class and the
included class can even implement a common interface (such as TimeStorer) so that code
that uses one or the other can't really tell the difference so long as it only uses the
interface's methods.

The DefaultGameFrame and GameControllable described above are similar. When the
DefaultGameFrame is asked to perform a reset (or a start or a stop or...), it passes this
request along to the GameControllable. In that case, the use of an interface type —
GameControllable — for the included object increases the flexibility and usability of the
including class.

8.3.4 The Power of Interfaces

Why are interfaces so good at providing this flexibility? Because and interface is all
about the contract an object makes and not about implementation. By relying on an
interface, you defer any dependence on implementation details that might not be true of
another implementation. This independence from implementation−specific details is
enforced by the compiler, which will not let you rely on properties of an object specified
by its interface type beyond those explicitly declared in the interface.

An object can also implement many different interfaces. In this case, it can be “seen” by
other objects through each of these different interface types. Each interface type provides
a different view of the object. By controlling these interfaces, a programmer controls the
view that the object's users have of that object.

Reliance on interface types doesn't work perfectly, though. For example, a resource
library such as Console or Math doesn't have an interface type. This is because resource

Chapter 8 Designing with Objects 269

libraries are typically non−instantiable classes. Only instances can have interface types.

270 Chapter 8 Designing with Objects

Chapter Summary

 In an informal description of the program, nouns generally correspond to objects
or to fields, methods to verbs, and interfaces to adjectives.

•

 Classes are the factories from which objects are created.•

 Interface types provide a valuable layer of abstraction, allowing the
implementation to vary without affecting the use.

•

 Members, classes, and instance marked public are accessible from anywhere
within a program. Members marked private are only accessible within their
defining class or instance.

•

 A data repository object exists to glue together a set of interdependent data. It has
fields corresponding to this data and methods that allow you to read and modify
this data.

•

 A resource library exists to hold a collection of methods or system−wide
resources. Generally, a resource library supplies these methods and resources
statically, i.e., it is not a class that is ever instantiated.

•

 Traditional objects mix both data and methods. These objects provide the kind of
integrated state−dependent behavior that we expect of real world objects.

•

Chapter 8 Designing with Objects 271

Exercises

 Design and implement a class called Time that keeps track of the hour and
minute together. Give it a nextMinute method that returns another Time, a minute
later. How do you access the fields of Time objects?

1.

 Design and implement a class that provides the following IntegerArithmetic
methods:

 add(int, int)♦
 sub(int, int)♦
 mul(int, int)♦
 div(int, int)♦

You can give it any other methods you think might be useful. What does its
constructor do? Why do you think that Java doesn't have such a class?

2.

 Design and implement a 2DVector class representing vectors in the plane.
Include sum, difference, and product methods.

3.

272 Chapter 8 Designing with Objects

Chapter 9

 Animate Objects

Chapter Overview

 How do I create an object that can act by itself?•

This chapter builds on the previous ones to create an object capable of acting without an
external request. Such an object has its own instruction follower, in Java called a Thread.
In addition, an object with its own instruction−follower must specify what instructions
are to be followed. This is accomplished by implementing a certain interface — meeting
a particular contract specification — that indicates which instructions the Thread is to
execute.

The remainder of this chapter deals with examples of how Threads and animate objects
can be used to create communities of autonomously interacting entities.

Objectives of this Chapter

 To understand that Threads are Java's instruction−followers.1.

 To appreciate the relationship between a Thread and the instructions that it
executes.

2.

 To be able to construct an animate object using AnimatorThread and Animate.3.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

9.1 Animate Objects

In previous chapters, we saw how objects group together state and behavior. Some
objects exist primarily to hold together constituent pieces of a single complex state. Other
objects exist to hold a static collection of primarily functional or system−specific
resources. Most objects contain both local state and methods that rely on and interact
with this state in complex ways. Many of these objects wait for something to happen or
for someone else to ask them to act. That is, nothing happens until something outside the
object invokes a method of the object. In this chapter, we look at objects that are capable
of taking action on their own, without being asked to do so from outside. These objects
have their own instruction−followers, making them full−blown entities.

Consider, for example, the Counter. This is a relatively traditional object. It has both state
and methods that depend on that state. An individual counter object encapsulates this
state−dependent behavior, wrapping it up into a neat package. But a counter doesn't do
anything unless someone asks it to, using its increment or reset method. By itself, a
counter can't do much.

Contrast this with a timer. A timer is very similar to a counter in having a method that
advances it to the next state (paralleling the counter's increment method) and one that sets
the state back to its default condition (such as reset). A timer differs from a counter,
however in that a timer counts merrily along whether someone asks it to or not. The
timer's reset method is a traditional (passive) method; the timer resets only when asked
to. But the timer's increment method is called by the timer itself on a regular basis.

This kind of object — one that is capable of acting without being explicitly asked to do
so — is called an animate object. Such an object has its own instruction−follower, or
actor, associated with it. While traditional objects are roles that an actor may take on and
then leave, an animate object is a role that is almost always inhabited by an actor and
tightly associated with it. Often, animate objects will use traditional objects (as well as
data repositories, resource libraries, and other kinds of objects) to perform their tasks,
temporarily executing instructions contained in these objects. But the animate object is
where it begins and ends.

What makes an animate object different from other (passive) objects? Recall that on the
first page of the first chapter of this book, we learned about the two prerequisites for a
computation: The instructions for the computation must be present, and those instructions
must be executed. Every method of every object is a set of instructions — a rule — that
can be executed. When a method is invoked, its body is executed. (The method body is
executed by the instruction−follower that invoked the method; this is how a method
invocation expression is evaluated.)

An animate object differs from other objects because it also has its instruction follower. It
does not need to wait for another instruction−follower to invoke one of its methods
(although this may also happen). Instead, it has a way to start execution on its own.

274 Chapter 9 Animate Objects

In Java, an instruction−follower is called a Thread. No object can act except a Thread. A
Thread is a special object that “breathes life” into other objects. It is the thing that causes
other objects to move. An animate object is simply an object that is “born” with its own
Thread. (Typically, this means that it creates its own Thread in its constructor and starts
its Thread running either in its constructor or as soon as otherwise possible.)

9.2 Animacies are Execution Sequences

In every method of every object, execution of that method follows a well−defined set of
rules. When the method is invoked, its formal parameters are associated with the
arguments supplied to the method call. For example, recall the UpperCaser
StringTransformer:

public class UpperCaser extends StringTransformer {
 public String transform(String what) {
 return what.toUpperCase();
 }
}

If we have UpperCaser cap = new UpperCaser(); then evaluating the
expression cap.transform(“Who's there?”) has the effect of associating the
value of the String “Who's there?” with the name what during the execution of the
body of the transform method.

Now, the first statement of the method body is executed. In the case of the method
invocation expression cap.transform(“Who's there?”), there is only one
statement in the method body. This is the return statement, which first evaluates the
expression following the return, then exits the method invocation, returning the value of
that expression. To evaluate the method invocation expression what.toUpperCase()
involves first evaluating the name expression what and then invoking the
toUpperCase() method of the object associated with the name what.

No matter how complex the method body, its execution is accomplished by following the
instructions that constitute it. Each statement has an associated execution pattern. A
simple statement like an assignment expression followed by a semicolon is executed by
evaluating the assignment expression. Expressions have rules of evaluation; in the case of
an assignment, the right−hand side expression is evaluated, then that value is assigned to
the left−hand side (dial or label). Evaluating the right−hand side expression may itself be
complicated, but by following the evaluation rules for each constituent expression, the
value of the right−hand side is obtained and used in the assignment.

A more complex statement, such as a conditional, has execution rules that involve the
evaluation of the test expression, then execution of one but not both of the following
substatements (the “if−block” or the “else−block”). Loops and other more complex

Chapter 9 Animate Objects 275

statements also have rules of execution. Declarations set up name−value associations;
return statements exit the method currently being executed.

At any given time, execution of a particular method is at a particular point and in a
particular context (i.e., with a particular set of name−value associations in force). If we
could keep track of what we're in the middle of doing and what we know about while
we're doing it, we could temporarily suspend and resume execution of this task at any
time. Imagine that you're following an instruction booklet to assemble a complex
mechanism. This problem is a lot like placing a bookmark into your instructions while
you go off to do something else for a while. All you need to know is where you were,
what you had around you, and what you were supposed to do next; the rest of the
instructions will carry you forward.

Inside the computer, there are things that keep track of where you are in an execution
sequence. These are special Java objects called Threads. The trick is that there can be
more than one Thread in any program. In fact, there are exactly as many things going on
at once as there are Threads executing in your program. A Thread keeps track of where it
is in its own execution sequence. Each Thread works on its own assembly project using
its own instruction booklet, just like multiple people can work side by side in a restaurant
or a factory.

In this book, we will make extensive use of a special kind of Thread called an
AnimatorThread. An AnimatorThread is an instruction follower that does the same thing
over and over again. It also has some other nice properties: it can be started and stopped,
suspended and resumed. These last two mean that it is possible to ask your instruction
follower to take a break for a while, then ask it later to continue working.
AnimatorThreads provide a nice abstraction for the kinds of activities commonly
conducted by the animate objects that are often entities in our communities.

9.3 Being Animate−able

In order for a Thread to animate an object, the Thread needs to know where to begin. A
Thread needs to know that it can rely on the object to have a suitable beginning place.
There must be special contract between the Thread and the object whose instructions this
Thread is to execute. The object promises to supply instructions; the Thread promises to
execute them. (In the case of the AnimatorThread, it promises to execute these
instructions over and over again.) As we know, such a contract is specified using a Java
interface. This interface defines a method containing the instructions that the Thread will
execute. The Thread will begin its execution at the instructions defined by this method.

9.3.1 Implementing Animate

If we use an AnimatorThread to animate our object, our object must fulfill the specific
contract on which AnimatorThread begins. This contract is specified by the interface
Animate:

276 Chapter 9 Animate Objects

public interface Animate {
 public abstract void act();
}

The Animate interface defines only a single method, void act(). A class implementing
Animate will need to provide a body for its act method, a set of instructions for how that
particular kind of object act's. An AnimatorThread will call this act method over and over
again, repeatedly asking the Animate object to act.

For example, the Timer that we described above could be implemented just as the
Counter, but with the addition of an act method:

public void act() {
 this.increment();
}

Of course, we'd also have to declare that Timer implements the Animate interface. It isn't
enough for Timer to have an act method; we also have to specify that it does so as a
commitment to the Animate interface. Here is a complete Timer implementation:

Chapter 9 Animate Objects 277

public class Timer implements Animate {

 private int currentValue;

 public Timer() {
 this.reset();
 }

 public void increment() {
 this.currentValue = this.currentValue + 1;
 }

 public void reset() {
 this.currentValue = 0;
 }

 public int getValue() {
 return this.currentValue;
 }

 public void act() {
 this.increment();
 }
}

Note that the implementation is entirely identical to the implementation of Counter
except for the clause implements Animate and Timer's act method.

[Footnote: As we shall see in the next chapter, we could significantly abbreviate this class
by writing it as

public class Timer extends Counter implements Animate, Counting {

 public void act() {
 this.increment();
 }
}

]

Now Timer tick = new Timer(); defines a Timer ready to be animated.

9.3.2 AnimatorThread

On the other side of this contract is the instruction follower, an AnimatorThread. Like
any other kind of Java object, a new AnimatorThread is created using an instance

278 Chapter 9 Animate Objects

construction (new) expression and passing it the information required by
AnimatorThread's constructor. The simplest form of AnimatorThread's constructor takes
a single argument, an Animate whose act method the new AnimatorThread should call
repeatedly.

For example, we can animate a Timer by passing it to AnimatorThread's constructor
expression:

Timer tick = new Timer();
AnimatorThread mover = new AnimatorThread(tick);

There is one more thing that we need to do before tick starts incrementing itself: tell the
AnimatorThread to startExecution:

mover.startExecution();

An AnimatorThread's startExecution is a very special method. It returns (almost)
immediately. At the same time, the AnimatorThread comes to life and begins following
its own instructions. That is, before the evaluation of the method invocation
mover.startExecution(), there was only one Thread running. At the end of the
evaluation of the invocation, there are two Threads running, the one that followed the
instruction mover.startExecution() and the one named mover, which begins
following the instructions at tick's act method.

Once started, the AnimatorThread's job is to evaluate the expression tick.act() over
and over again. Each time, this increments tick's currentValue field. The
AnimatorThread named mover calls tick's act method over and over again, repeatedly
causing tick to act.

We can collapse the two AnimatorThread statements into one by writing

new AnimatorThread(tick).startExecution();

However, this form does not leave us holding onto the AnimatorThread, so we couldn't
later tell it to suspendExecution, resumeExecution, or stopExecution. (See below.) If we
anticipate needing to do any of these things, we should be sure to hold on to the
AnimatorThread (using a label name).

9.3.3 Creating the AnimatorThread in the Constructor

If our Timers will always start ticking away as soon as they are created, we can include
the Thread creation in the Timer constructor:

Chapter 9 Animate Objects 279

public class AnimateTimer implements Animate {

 private int currentValue;
 private AnimatorThread mover;

 public AnimateTimer() {
 this.reset();
 this.mover = new AnimatorThread(this);
 this.mover.startExecution();
 }

 public void increment() {

 // ... rest of class is same as Timer

In this case, as soon as we say

Timer tock = new AnimateTimer();

tock will begin counting away. If we invoke tock.getValue() at two different
times — even if no one (except its own AnimatorThread) asks tock to do anything at all
in the intervening time — the second value might not match the first. This is because
tock (with its AnimatorThread) can act without needing anyone else to ask it.

Here is another class that could be used to monitor a Counting (such as a Counter or a
Timer):

public class CountingMonitor implements Animate {

 private Counting whoToMonitor;
 private AnimatorThread mover;

 public CountingMonitor(Counting whoToMonitor) {
 this.whoToMonitor = whoToMonitor;
 this.mover = new AnimatorThread(this);
 this.mover.startExecution();
 }

 public void act() {
 Console.println(“The timer says ”
 + this.whoToMonitor.getValue());
 }
}

Note in the constructor that the first whoToMonitor (this.whoToMonitor) refers to the
field, while the second refers to the parameter.

280 Chapter 9 Animate Objects

9.3.4 A Generic Animate Object

The way that AnimateTimer and CountingMonitor use an AnimatorThread is pretty
useful. There is a cs101 class, AnimateObject, that embodies this behavior. It is probably
the most generic kind of animate object that you can have; any other animate object
would behave like a special case of this one. We present it here to reinforce the idea of an
independent animate object. It generalizes both CountingMonitor and AnimateTimer.

At this point, you should regard this class as a template. Change its name and add a real
act method to get a real self−animating object. In the chapter on Inheritance, we will
return to this class and see that there is a way to make this template quite useful directly.

public class AnimateObject implements Animate {

 private AnimatorThread mover;

 public AnimateObject() {
 this.mover = new AnimatorThread(this);
 this.mover.startExecution();
 }

 public void act() {
// what the Animate Object should do repeatedly

 }
}

It is worth noting that an Animate need not be animated by an AnimatorThread. For
example, a group of Animates could all be animated by a single SequentialAnimator that
asks each Animate to act, one at a time, in turn. No Animate could act while any other
Animate was mid−act. Each would have to wait for the previous Animate to finish. This
SequentialAnimator would require only a single instruction follower (or Thread) to
execute the sequential Animates' instructions, because it would execute them one act
method at a time. When one animate is acting, no one else can be.

The nature of execution under such a synchronous assumption would be very different
from executions in which each Animate had its own Thread and they were all acting
simultaneously. Roughly it's the difference between a puppet show with one
not−very−skillful puppeteer, who can only operate a single puppet at a time, and a whole
crowd of puppeteers each operating a puppet. The potential for chaos is much greater in
the second scenario, but so is the potential for exciting interaction. When each object has
its own AnimatorThread — as in the AnimateObject template — any other Animate (or
the methods it calls) can execute at the same time.

Chapter 9 Animate Objects 281

9.4 More Details

This section broadens the picture painted so far.

9.4.1 AnimatorThread Details

The AnimatorThread class and the Animate interface reside in the package cs101.lang.
This means that any file that uses these classes should have the line

import cs101.lang.*;

before any class or interface definition.

The class AnimatorThread specifies behavior for a particular kind of instruction follower.
Its constructor requires an object that implements the interface cs101.lang.Animate, the
object whose act method the AnimatorThread will repeatedly execute.

After constructing an AnimatorThread, you need to invoke its startExecution method.

[Footnote: AnimatorThread's instances also have a startExecution method that is identical
to the startExecution method. This is for historical reasons.]

This causes the AnimatorThread to begin following instructions. In particular, the
instructions that it follows say to invoke its Animate's act method, then wait a little while,
then invoke the Animate's act method again (and so on). To temporarily suspend
execution, use the AnimatorThread's suspendExecution method. Execution may be
restarted using resumeExecution. To permanently terminate execution, AnimatorThread
has a stopExecution method. Once stopped, an AnimatorThread's execution cannot be
restarted. However, a new AnimatorThread can be created on the same Animate object.

An object — like an Animate — is a set of instructions — or methods — plus some state
used by these instructions. There is nothing to prevent more than one Thread from
following the same set of instructions at the same time. For example, it would be possible
to start up two AnimatorThreads on the same Timer. If the two AnimatorThreads took
turns fairly and evenly, one AnimatorThread would always move from an odd to an even
numbered currentValue, while the other would always move from an even to an odd
numbered value. Of course, there's nothing requiring that the two AnimatorThreads play
fair. Like children, one might take all of the turns — incrementing the Timer again and
again — while the other might never (or rarely) get a turn. AnimatorThreads are designed
to minimize this case, but it can happen. The problem is more prevalent with other kinds
of Threads.

One of the ways in which AnimatorThread tries to “play fair” is in providing intervals
between each attempt to follow the act instructions of its Animate object. The
AnimatorThread has two values that it uses to determine the minimum interval between

282 Chapter 9 Animate Objects

invocations of the Animate's act method and the maximum interval. Between these two
values, the actual interval is selected at random each time the AnimatorThread completes
an act. You can adjust these parameters using setter methods of the AnimatorThread.
Values for these intervals may also be supplied in the AnimatorThread's constructor. See
the AnimatorThread sidebar for details.

class AnimatorThread

AnimatorThread is a cs101 class (specifically, cs101.lang.AnimatorThread) that
serves as a special kind of instruction−follower. An AnimatorThread's constructor
must be called with an instance of cs101.lang.Animate. The AnimatorThread
repeatedly follows the instructions in the Animate's act method.

An AnimatorThread is an object, so it can be referred to with an appropriate (label)
name. It also provides several useful methods:

void startExecution() causes the AnimatorThread to begin
following the instructions at its Animate's act method. Once started,
the AnimatorThread will follow these instructions repeatedly at
semi−random intervals until it is stopped or suspended

void stopExecution() causes the AnimatorThread to
terminate its execution. Once stopped, an AnimatorThread cannot be
restarted. This method may terminate execution abruptly, even in the
middle of the Animate's act method.

void suspendExecution() causes the AnimatorThread to
temporarily suspend its execution. If the AnimatorThread is already
suspended or stopped, nothing happens. If the AnimatorThread has
not yet started and is started before an invocation of
resumeExecution, it will start in a suspended state, i.e., it will not
immediately begin execution. This method will not interrupt an
execution of the Animate's act method; suspensions take effect only
between act's.

void resumeExecution() causes the AnimatorThread, if
suspended, to continue its repeated execution of its Animate's act
method. If the AnimatorThread is not suspended or already stopped,
this method does nothing. If the AnimatorThread is suspended but
not yet started, invoking resumeExecution undoes the effect of any
previous suspendExecution but does not startExecution.

Chapter 9 Animate Objects 283

Between calls to the Animate's act method, the AnimatorThread sleeps, i.e.,
remains inactive. The duration of each of these sleep intervals is randomly chosen
to be at least sleepMinInterval and no more than sleepMinInterval +
sleepRange. These values are by default set to a range that allows for variability
and slows activity to a rate that is humanly perceptible. If you wish to change these
defaults, they may be set either explicitly using setter methods or in the
AnimatorThread constructor.

void setSleepRange(long howLong) sets the desired
variance in sleep times above and beyond sleepMinInterval

void setSleepMinInterval(long howLong) sets the
range of variation in the randomization

By setting sleepRange to 0, you can make your AnimatorThread's activity
somewhat more predictable as it will sleep for approximately the same amount of
time between each execution of the Animate's act method. Setting sleepMinInterval
to a smaller value speeds up the execution rate of the AnimatorThread. Setting it to
0 can be dangerous and should be avoided. If sleepRange is 0, it is possible that this
AnimatorThread will interfere with other Threads' ability to run.

AnimatorThread supplies a number of constructors. The first requires only the
Animate whose act method supplies this AnimatorThread's instructions:

AnimatorThread(Animate who)

The next two constructors incorporate the same functions as setRange and
setMinInterval:

AnimatorThread(Animate who, long sleepRange)

AnimatorThread(Animate who, long sleepRange,
 long sleepMinInterval)

It is also possible to specify explicitly whether the AnimatorThread should start
executing immediately. By default, it does so. The following constructor allows you
to override this explicitly using the boolean constants
AnimatorThread.START_IMMEDIATELY and
AnimatorThread.DONT_START_YET.

AnimatorThread(Animate who, boolean startImmediately)

284 Chapter 9 Animate Objects

Finally, there are two additional constructors that incorporate both startup and
timing information:

AnimatorThread(Animate who, boolean startImmediately,
 long sleepRange)

AnimatorThread(Animate who, boolean startImmediately,
 long sleepRange,
 long sleepMinInterval)

9.4.2 Delayed Start and the init Trick

It is awfully convenient to be able to define an animate object as an Animate that creates
and starts its own AnimatorThread. This hides the Thread creation and manipulation
inside the Animate (as in the example of AnimateTimer), making it appear to be a fully
self−animating object from the outside. However, sometimes we need to separate the
construction of the Animate and its AnimatorThread from the initiation of the
AnimatorThread instruction follower. That is, we want the AnimatorThread set up, but
not yet actually running. For example, we might need a part that isn't yet available at
Animate/AnimatorThread creation time. On these occasions, it would be awkward to start
the execution of an AnimatorThread in the constructor of its Animate. For example, if the
Animate's act method relies on other objects and these other objects may not yet be
available, you wouldn't want the AnimatorThread to start executing the act method yet.

An example of this might be in the StringTransformer class in the first interlude, in which
you can't read or transform a String until after you've accepted an input connection. Since
the input connection might not be available at StringTransformer construction time, one
solution to this problem is to delay the starting of the execution of the act method until
after the input connection has been accepted. Once the constructor completes, the newly
constructed object's acceptInputConnection method can be invoked. At this point — and
not before — the AnimatorThread's startExecution method can be invoked. This means
that the call to the AnimatorThread's startExecution method can't appear in the
constructor. But it can't be invoked by any object other than the Animate, because the
AnimatorThread is held by a private field of the Animate.

This situation — that there are things that need to be done that are logically part of the
setup of the object, but that cannot be done in the constructor itself — is a common one.
To get around it, there is a convention that says that such objects should have init
methods. Whoever is responsible for setting up the object should invoke its init method
after this setup is complete. The object can rely on the fact that its init method will be
invoked after the object is completely constructed and — in this case — connected. We
could then put the call to the AnimatorThread's startExecution method inside this init
method.

Chapter 9 Animate Objects 285

Here is a delayed−start version of the AnimateObject template.

public class InitAnimateObject implements Animate {

 private AnimatorThread mover;

 public InitAnimateObject() {
 this.mover = new AnimatorThread(this);
 }

 public void init() {
 this.mover.startExecution();
 }

 public void act() {
// what the Animate Object should do repeatedly

 }
}

A concrete example of this issue arises if we look at CountingMonitor and don't assume
that the Counting will be supplied to the constructor. Here is another version of
CountingMonitor without the constructor parameter:

public class InitCountingMonitor implements Animate {

 private Counting whoToMonitor;
 private AnimatorThread mover = new AnimatorThread(this);

 public void setCounting(Counting whoToMonitor) {
 this.whoToMonitor = whoToMonitor;
 }

 public void init() {
 this.mover.startExecution();
 }

 public void act() {
 Console.println(“The timer says ”
 + this.whoToMonitor.getValue());
 }
}

The use of a method named init here is completely arbitrary. You are free to define your
own method and call it whatever you want. However, you will see that many people
follow this convention and provide an init method for their objects when there is
initialization that must take place after the constructor and setup process is complete.

286 Chapter 9 Animate Objects

9.4.3 Threads and Runnables

The Animate/AnimatorThread story that we've just seen is not a standard part of Java,
though it is only a minor variant on something that is. There are two reasons why we've
used AnimatorThreads here. The first is that most of the self−animating object types in
this book are objects whose act method is executed over and over again. AnimatorThread
is a special kind of Thread designed to do just that. The second is that AnimatorThread
contains some special mechanisms to facilitate its use in applications where you might
want to suspend and resume its execution or even to stop it entirely. AnimatorThread
provides methods supporting this behavior.

There is, however, in Java a more primitive type of Thread, called simply Thread. Like
an AnimatorThread, a simple Java Thread can be given an object to animate when the
Thread is created. (Its constructor takes an argument representing the object whose
instructions the Thread is to follow once it has been started.) However, the Thread does
not execute this method repeatedly; it executes it once, then stops. The contract that a
Thread requires of the object providing its instructions is not Animate, meaning it can be
called on to act repeatedly. Instead, it is Runnable, meaning it can be executed once.

Thread (as of Java 1.1) does not provide suspension, resumption, or cessation methods. In
this book, we avoid the use of plain Java Threads.

In addition, it is technically possible in Java to extend a Thread object rather than passing
it an independent Runnable. Except in code that creates special kinds of Threads (such as
AnimatorThread) capable of animating other objects, the extending of Thread is highly
discouraged in this book. Extending Thread to create an executing object (whose own run
method is the set of instructions to be followed) confounds the notion of an executor with
the executed.

9.4.4 Thread Methods

Thread methods

Threads are Java's instruction followers. In this book, we will most often make use
of AnimatorThread's. However, it is useful to understand how Java's built−in
Thread class works as well.

Like an AnimatorThread, each Thread provides a few methods for its management.

void start() Like AnimatorThread's startExecution, this
method causes the target Thread to begin following instructions. If
the Thread's constructor was supplied a Runnable, the Thread begins
execution at this Runnable's run method. When the run method

Chapter 9 Animate Objects 287

terminates, the Thread's execution is finished.

boolean isAlive() tells you whether the target Thread is
alive, i.e., has been started and has not completed its execution.

void interrupt() sends the target Thread an
InterruptedException. Useful if that Thread is sleeping, waiting, or
joining.

void join() causes the invoking Thread to suspend its execution
until the target Thread completes. Variants allow time limits on this
suspension: void join(long millis) and void
join(long millis, long nanos).

Unlike AnimatorThread, a Thread cannot safely be stopped, suspended, or resumed.

In addition to its role as the type of Java's instruction followers, the Thread class
provides useful static (i.e., class−wide) functionality. These methods are static
methods of the class Thread:

static void sleep(long millis) causes the currently
active Thread to stop executing for millis milliseconds. This method
throws InterruptedException, so it cannot be used without some
additional machinery (introduced in the chapter on Exceptions).
There is a variant method, sleep(long millis, long
nanos) that allows more precision in controlling the duration of the
Thread's sleep.

static void yield() is intended to pause the currently
executing Thread and to allow another Thread to run. However, not
all versions of Java implement Thread.yield in a way that ensures
this behavior.

Other Thread features are outside the scope of this course.

9.5 Where Do Threads Come From?

We have discussed the idea of AnimatorThreads above, showing how to create
self−animating objects by having an AnimatorThread created in an object's constructor.
Such an object is born running; it continually acts, over and over, until its Thread is
suspended or stopped.

288 Chapter 9 Animate Objects

In fact, no execution in Java can take place without a Thread. But something must call the
AnimatorThread constructor; this instruction must be executed by a Thread! So where
does the first Thread come from? This depends on the particular kind of Java program
that you are running. In this book, we look primarily at Java applications. In the
appendix, we also answer these questions for Java applets.

9.5.1 Starting a Program

What does it mean for a Java program to run? It means that there is an instruction
follower that executes the instructions that make up this program. In Java, there is no
execution without a Thread, or instruction−follower, to execute it. So when a program is
run, some Thread must be executing its instructions. Where does this Thread come from,
and how does it know what instructions to execute?

Let's answer the first of these questions first. When a Java program is run, a single
Thread is created and started. This is not a Thread that your program creates; it is the
Thread that Java creates to run your program. Depending on whether your Java program
is an application (as we're discussing in this book) or an applet (as you may have
encountered on the world−wide web) or some other kind of Java program, there are
different conventions as to where this Thread begins its execution. But running a program
by definition means creating a Thread — an instruction follower — to execute that
program.

How does the Thread know where to begin? By convention. What do we mean by a
convention? AnimatorThread's use of Animate is a convention. This convention is, in
some sense, completely arbitrary. That is, a different interface name or other method
might have been used. For example, the raw Thread class uses a different convention,
that of Runnable/run. If you were to design your own type of Thread, you could create a
different convention for it to follow. However, once these names and contracts have been
selected by the designers of AnimatorThread and Thread, they are absolute rules that
cannot be violated.

Similarly, there must be some arbitrary convention as to how a Java program begins. In a
standalone application, the convention is that running a Java program means supplying a
class to the executable, and by convention a particular method of the class is always the
place that execution begins. This default execution does not create an instance of the
class, so the method must be a static one. Again by convention, the name of this method
is main, it takes as argument an array of Strings, and it returns nothing. That is, the
arbitrary but unvarying start point for the execution of a standalone Java application is the

public static void main(String[] args)

method of the class whose name is supplied to the executable.

[Footnote: Typically, this means the class you select before choosing run from the IDE

Chapter 9 Animate Objects 289

menu or the class whose name follows the command java on the command line.]

So if you want to write a program, you simply need to create a class with a method whose
signature matches the line above. The body of that main method will be executed by the
single Thread that is created at the beginning of a Java execution. When execution of
main terminates, the program ends. If you do not want the program to end, you need to do
something during the course of executing main that causes things to keep going.
Typically, this means that you use the body of main to create one or more objects that
themselves may execute. For example, if the body of main creates an animate object
(with its own AnimatorThread), then that object will continue executing even if the body
of main is completed. This is called “spawning a new Thread.”

Here is a very simple class that exists solely to create a new instance of the
AnimateTimer class:

public class Main {

 public static void main(String[] args) {
 Counting theTimer = new AnimateTimer();
 }
}

This program simply counts. The instruction follower that begins when this program
starts up (e.g., using the command java Main) executes the main method, invoking
new AnimateTimer() and assigning the result to theTimer. This Thread is now done
executing and stops. However, the constructor for AnimateTimer has created a new
AnimatorThread and then called that AnimatorThread's startExecution method. This
starts up the new Thread which repeatedly calls AnimateTimer's act method. The
program as a whole will not terminate until the AnimatorThread stops executing, which it
will not do by itself. If you run this program, you will need to forcibly terminate it from
outside the program!

Since we didn't give this program any way to monitor or indicate what's going on,
running it wouldn't be very interesting. But we can use the CountingMonitor above to
improve this program:

public class Main {

 public static void main(String[] args) {
 Counting theTimer = new AnimateTimer();
 Animate theMonitor = CountingMonitor(theTimer);
 }
}

290 Chapter 9 Animate Objects

Question: Can you find a more succinct way to express the body of the main method?

Question: What will be printed by this program? On what does it depend? (Hint:
fairness.)

The instruction follower executing the Main class's main method exits. However, before
it completes it executes the instructions to create and start two separate AnimatorThreads.
These AnimatorThreads continue after the execution of the main Thread exits. Again, this
program must be forcibly terminated from outside.

Question: Can you cause this program to stop by itself sometime after it has counted to
100? (This is a bit tricky.)

The two versions of the Main class above each contain just the instructions to create an
instance or two. In the cs101 libraries, we have provided a Main that does this for you.
This allows you to write applications without needing to write public static
void main(String[]) methods yourself.

class Main

The cs101 libraries include a class, cs101.util.Main, that can be run from the java
command line to create an instance of a single class with a no−args constructor. For
example, we could implement the unmonitored Timer example using the following
command:

java cs101.util.Main AnimateTimer

This causes code much like the first Main class to execute, creating a single
instance of AnimateTimer (using its no−args constructor).

The class cs101.util.Main contains nothing but the single static method main (taking
a String[] argument). The command above tells Java to start its initial instruction
follower at this method — the static main(String[]) method of the class
cs101.util.Main. The remainder of the information on the command line (in this
case, AnimateTester) is supplied to the main method using its parameter.

[Footnote: For more detail on arrays ([]), see the chapter on Dispatch.]

Chapter 9 Animate Objects 291

Style Sidebar

Using main

If you do decide to write your own main method, you should do so in a class
separate from your other classes, generally one called Main and containing only the
single public static void main method requiring a String[] (i.e., an array of Strings).
This method may have some complexity, creating several objects and gluing them
together, for example.

Alternately, you can create an extremely simple main method in any (or even every)
class that you write. In this case, however, the main method should do nothing more
than to create a single instance of the class within which it is defined, using that
class's no−args constructor. Of course, the signature of each main method is the
same:

 public static void main(String[] args)

The main that will actually be executed is the one belonging to the (first) class
whose name is supplied to the java execution command. So, for example, in the
sidebar on class Main, we said

java cs101.util.Main AnimateTimer

causing cs101.util.Main's main method to be run.

The logic behind these restrictions on the use of main is as follows. In the second
case — main in many instantiable class's files — the presence of main allows that
object to be tested independently. However, this test is extremely straightforward
and predictable. If the main method takes on any additional complexity, it should be
separated from the other (instantiable) classes and form its own resource library,
one that exists solely to run the program in all its complexity.

9.5.2 Why Constructors Need to Return

In the code above, each Animate's constructor calls the startExecution method of a new
Thread. This in turn repeatedly calls the act method of the Animate. Why doesn't the
constructor just repeatedly call the Animate's act method itself (e.g., in a while loop)?

This is a fundamental issue. If the Animate's constructor called the act method itself, the
instruction follower — or Thread — executing the constructor would be trapped forever
in a loop calling act over and over. The constructor invocation — the new expression —

292 Chapter 9 Animate Objects

would never complete. In the monitored counting example, the invocation of
AnimateTimer's constructor would cause the instruction follower to execute the act
method of AnimateTimer over and over again. This instruction follower — the only
instruction follower to be running so far — would never complete the repeated execution
of the act method. This means that it would never get around to creating the
CountingMonitor.

This is why AnimatorThread.startExecution must be a very special kind of method. The
Thread, or instruction follower, that executes startExecution must return (almost)
immediately. It is the new Thread, the one just started, that goes off to execute the act
method. The original Thread returns from this invocation and goes about its business just
as if nothing ever happened. In personal terms, this is the difference between doing the
job yourself and assigning someone else to do it. True, when someone else does it you
have less control over how or when the job gets done; but while someone else is working
on it, you can be doing something else.

Chapter 9 Animate Objects 293

Chapter Summary

 In Java, activity is performed by instruction followers called Threads.•

 An animate object is simply one that has its very own Thread.•

 An AnimatorThread is a useful kind of Thread that repeatedly follows the
instructions provided by some object's act method.

 This object must implement the Animate interface.♦

 It must be supplied to the AnimatorThread's constructor.♦

•

 An AnimatorThread can also be asked to start, stop, suspend, or resume
execution.

•

 Java programs may involve other Threads.•

 One Thread begins execution at

public static void main(String[] args)

when a Java application is begun.

♦

 GUI objects involve their own Threads.♦

 Other Threads may be explicitly created.♦

294 Chapter 9 Animate Objects

Exercises

 Define a class whose instances each have an internal value that doubles
periodically. Each time that the value doubles, the instance should print this new
value to the Console.

1.

 Define a class that periodically reads from the Console and writes the value back
to the Console.

2.

 Define a main class that creates three instances of your doubler.3.

 Using the timing parameters of AnimatorThread, demonstrate that not all
doublers have to run at the same rate.

4.

Chapter 9 Animate Objects 295

296 Chapter 9 Animate Objects

Chapter 10

 Inheritance

Chapter Overview

 How do I simplify the program design task by reusing existing code?•

 How do I create variants on things I already have?•

 When is it not appropriate to reuse code?•

This chapter covers class−based inheritance as a way to reuse implementation.
Inheritance allows you to define a new class by specifying only the ways in which it
differs from an existing class. Those differences can include: additional (or alternative)
contracts that it satisfies, behaviors that it provides, internal information that it stores, or
startup instructions. Inheritance means that existing code can be adapted and reused, with
some modification, in new contexts.

The mechanism by which inheritance works involves extending the parent class
definition either by augmenting or overriding behavior defined there. Most of this chapter
concentrates on how these mechanisms work. Not every instance of similar behavior is an
appropriate context for inheritance. The chapter concludes with a discussion of the
limitations of inheritance.

This chapter includes sidebars on the details of method and field lookup. It is
supplemented by reference charts on the syntax and semantics of java methods, fields,
and class declarations.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To understand how one class can build on behavior supplied by another.1.

 To be able to extend and modify existing definitions2.

 To recognize when to use mechanisms other than inheritance to extend behavior.3.

10.1 Derived Factories

We have so far seen several cases in which we wanted to build multiple kinds of things
that shared a basic similarity. When this similarity was largely in the contract
implemented — as with Counters and Timers — we abstracted this similarity into an
interface. The interface allowed us to deal with objects without knowing the details of
their implementations, i.e., to treat them solely in light of the contracts that they provided.

In this chapter, we are more concerned with situations in which two kinds of objects
share not only the same contract but almost the same implementation. For example, the
BasicCounter and the Resettable Counter contained almost precisely the same code. In
fact, the BasicCounter's code was (except for the class and constructor name) a proper
subset of the Resettable Counter's code. Similarly, the code for AnimateObject was
contained in the code for AnimateTimer and the code for CountingMonitor. And almost
every StringTransformer simply elaborates on the generic StringTransformer, simply
providing a specialized version of the transform method.

In cases where code really matches at the level of wholesale textual reuse of a class, Java
provides a mechanism to allow one type of object to build on the behavior specified by
another. This is a relationship between one class and another. Since classes are essentially
object factories, we can think of this as a situation in which one factory produces its
widgets by buying widgets wholesale from another factory, then adding its own minor
tweaks (bells and whistles) to the widgets before claiming to have produced them.

The mechanism by which this is accomplished in Java is called inheritance, and it
applies to a relationship between two classes. There is a similar relationship between two
interfaces, described below. Inheritance is not ever a relationship between a class and an
interface (or between an interface and a class). Inheritance really means an almost literal
subsuming of one thing by another.

298 Chapter 10 Inheritance

10.1.1 Simple Inheritance

Consider, for example, the AnimateObject class from the previous chapter and its near
relative, the CountingMonitor. The AnimateObject class says:

public class AnimateObject implements Animate {

 private AnimatorThread mover;

 public AnimateObject() {
 this.mover = new AnimatorThread(this);
 this.mover.startExecution();
 }

 public void act() {
// what the AnimateObject should do repeatedly

 }
}

In implementing the CountingMonitor class, we really only want to change the
highlighted things:

public class CountingMonitor implements Animate {

 private Counting whoToMonitor;

 private AnimatorThread mover;

 public CountingMonitor(Counting whoToMonitor) {
 this.whoToMonitor = whoToMonitor;
 this.mover = new AnimatorThread(this);
 this.mover.startExecution();
 }

 public void act() {
Console.println(“The timer says ”

 + this.whoToMonitor.getValue());
 }
}

It would be really nice only to have to write the highlighted information, not the rest. In
fact, we can do almost exactly that. The following definition is almost equivalent to the
Counter definition above:

Chapter 10 Inheritance 299

public class CountingMonitor extends AnimateObject {

 private Counting whoToMonitor;

 public CountingMonitor(Counting whoToMonitor) {
 this.whoToMonitor = whoToMonitor;
 }

 public void act() {
Console.println(“The timer says ”

 + this.whoToMonitor.getValue());
 }
}

We have preserved the highlighting, and you can see that almost the entire new class is
highlighted. One of the few non−highlighted items is the phrase extends
AnimateObject. This is the phrase that does almost all of the work. It means, roughly,
a CountingMonitor is an AnimateObject; it just provides the additional specified
behavior.

 It has its own private field, whoToMonitor, suitable for labeling a Counting.1.

 It has a constructor that takes one argument, a Counting, and holds on to it.2.

 Its act method has a much more interesting body than AnimateObject's.3.

This code is equivalent to the original definition of CountingMonitor. It is much shorter
to write. To use it, simply begin with the instructions for AnimateObject and add the
pieces that CountingMonitor provides, extending the behavior of the AnimateObject (in
the absence of conflicting instructions) to do these additional things.

In essence each CountingMonitor instance has an AnimateObject instance inside of it.
Whenever the CountingMonitor can't figure out how to do something, it simply defaults
to the behavior of its AnimateObject. That way, the CountingMonitor doesn't have to
provide all of the behavior that an AnimateObject already has; it can just rely on the
existing implementation.

The remainder of this chapter deals with the details of this proposition.

10.1.2 The java.lang.Object Type

There is actually a single built−in type called Object, and all other object types (directly
or indirectly) extend Object. In other words, anything which is not one of the built in
types is an Object of some sort or another.

300 Chapter 10 Inheritance

class Cat extends Animal {

}

A class declaration is followed by an optional extends clause, then a pair of braces
around the body of the class definition. If the extends clause is missing (e.g., class
Widget {...}), the default clause extends Object is assumed. Thus, every
class (implicitly or explicitly, directly or indirectly) extends Object.

The class Object provides some basic functionality that every other class necessarily
inherits. This means that you can guarantee that every Java object has, e.g., a toString
method. See the sidebar on The Object class for details.

Chapter 10 Inheritance 301

The Object class

The class java.lang.Object is the root of the inheritance hierarchy, i.e., the class of
which all other classes are subclasses. Every Java object is guaranteed to implement
each of the methods provided by Object (though their implementations may vary).

equals(Object) returns true exactly when the argument Object is
the same Object as the one whose method is invoked. This is exactly
the same thing that == would do on two Objects. You may override
equals to do something somewhat more interesting.

toString() returns a String ostensibly suitable for printing. It contains
a lot of useful information in a generally illegible format, so if you
are interested in being able to read your objects, you may wish to
override this method to print something more easily
human−readable.

getClass() returns the Class object (i.e., factory) from which this
instance was created.

clone() is a peculiar method of Object because although every object
implements it, it can be used only with instances of classes that also
implement the Cloneable interface. If a class implements the
Cloneable interface, the inherited version of clone simply creates a
new object of the same type as the original and whose fields have the
same values as the fields of the original. You may override clone to
do whatever you wish.

[Footnote: If you call the clone method of an object that doesn't
implement Cloneable, it will throw CloneNotSupportedException.
See the next chapter for more on Exceptions.]

Object also provides other methods (finalize, hashcode, wait, notify, and notifyAll)
that are beyond the scope of the material covered here.

10.1.3 Superclass Membership

When one class extends another — as in the CountingMonitor / AnimateObject example
above, we say that the extending class (CountingMonitor) is a subclass of the extended
class (AnimateObject), and that the extended class is a superclass of the extending class.
Neither subclass nor superclass is an absolute description; instead, both describe
relationships between two classes.

302 Chapter 10 Inheritance

When we say that one class is a subclass of another, what we mean is that we can treat
instances of the subclass in all respects as though they were members of the superclass.
For example, we can use a CountingMonitor anywhere we can use an AnimateObject.
We can assign a CountingMonitor to a name whose type makes it appropriate for labeling
AnimateObjects. (After all, a CountingMonitor is an AnimateObject.) We can return a
CountingMonitor from a method that expects to return an AnimateObject, or pass one as
an argument to a method expecting an AnimateObject parameter. A CountingMonitor is
simply a special kind of AnimateObject.

In fact, subclasses have all of the type−relational properties of classes and the interfaces
that they implement. A subclass instance can be assigned to a name of the superclass
type. It answers true to the instanceof predicate on the superclass.

[Footnote: A predicate is a boolean method, that is, a method whose returned value is
true or false.]

It can even be automatically coerced up−cast to its superclass type. This is the same kind
of automatic coercion that happens from int to long, and it is similarly guaranteed always
to succeed and never to lose information.

Treating a CountingMonitor as an AnimateObject doesn't actually change the
CountingMonitor, though. The CountingMonitor is still a CountingMonitor, with its
extended act method and its Counting to keep track of. This is the same situation as when
an object is treated according to its interface type: this narrows the view of the object, but
it doesn't change the underlying object.

If you are currently holding what looks like a superclass instance (e.g., an
AnimateObject), and you suspect that it is actually an instance of a subclass, you can
attempt to do a down−cast coercion on it. As with primitive types, a narrowing
conversion is one that may not work or may lose information.

For example, if AnimateObject ao has some value that you think might be a
CountingMonitor, you can try the expression

(CountingMonitor) ao

(e.g., in an assignment statement or in a method invocation). However, if you're wrong
and this AnimateObject is not a CountingMonitor, this will cause your program serious
problems. (See the next chapter for information about how these problems arise and what
you can do about them.) So you may want to test whether this is an OK thing to do first,
using a guard expression:

CountingMonitor cm;
if (ao instanceof CountingMonitor) {
 cm = (CountingMonitor) ao;
}

Chapter 10 Inheritance 303

This first checks to see whether it's OK to treat the AnimateObject as a CountingMonitor.

So far, we have seen that instances have several types: the type of the class from which
the instance was created, the types of any interfaces that class implemented, and the types
of any superclass that this class extends. This may mean many interface types (since a
class can implement many interfaces). A class can only extend a single superclass, but
this does not limit the number of legal class types because the superclass may itself
extend another class, and so on. Where does this end?

We can use the idea of superclass membership to create very powerful abstractions, but
not without the help of casting. For example, Java provides a class, Vector, that allows us
to hold on to a collection of Objects; it behaves sort of like a whole bunch of names, but
indexed by number. Vector provides an addElement method that takes any Object as an
argument. This means that any Object can be inserted into a Vector. For example, you
can insert a String into a Vector, and an AnimateObject as well:

Vector v = new Vector();
v.addElement(“Silly string”);
v.addElement(new Timer());

However, when we retrieve the elements we've inserted, we discover that Vector's
elementAt method doesn't know the type of the Object we've inserted. Instead,
elementAt() returns an Object; it is up to us to figure out what kind of thing we've gotten
back. For example, the first thing in the Vector (at element 0) is the String “Silly
string”. So we can say

Object o = v.elementAt(0);

or

String s = (String) v.elementAt(0);

but not

String s = v.elementAt(0);

because this is an illegal attempt to assign a value of type Object (v.elementAt(0)) to a
name of type String. The explicit cast expression of the previous line is needed to make
this statement legal.

10.2 Overriding

The examples of inheritance in the previous section demonstrated that a subclass can
extend the functionality of its superclass. The subclass can also modify superclass
functionality by overriding, or redefining, methods provided by the superclass. In fact,
CountingMonitor overrode the act method provided by AnimateObject. This just wasn't a

304 Chapter 10 Inheritance

very interesting example because AnimateObject's act method didn't do anything.

Consider the following classes:

public class Super {
 public void doit() {
 Console.println(“super method”);
 }

 public void doitAgain() {
 this.doit();
 }
}

public class OverridingSub extends Super {
 public void doit() {
 Console.println(“overridingSub method”);
 }
}

Now suppose that we create an instance of OverridingSub and ask it to doit():

OverridingSub over = new OverridingSub();
over.doit();

As expected, this prints overridingSub method. What if we labeled the
OverridingSub with a Super name?

Super supe = new OverridingSub();
supe.doit();

The same thing: overridingSub method. Recall that using a different type of name
doesn't change the underlying object.

10.2.1 The super Expression

What if we still want to be able to access Super's doit method from the subclass? To do
this, we need a special expression much like this. The expression this refers to the
instance whose code is being executed. The expression super refers to the superclass of
the object containing the actual executing code.

Chapter 10 Inheritance 305

public class ExpandingSub extends Super {
 public void doit() {
 super.doit();
 Console.println(“expandingSub method”);
 }
}

In this case, we'll get the effect of executing the superclass method followed by the local
println:

super method
expandingSub method

If we reverse the lines of the method body, we will reverse the order of the printed lines.

10.2.2 The Outside−In Rule

There is one more trick lurking in this example. This is the doitAgain method in Super.
We know what happens when we ask an instance of Super to doitAgain(): it does
the same thing as if we'd asked it to doit(). But what if we ask a subclass instance?

over.doitAgain()

The first thing that happens is that we have to find the doitAgain method for
OverridingSub. To do this, we start looking at the outermost (sub) class. This is
OverridingSub. But it doesn't contain an appropriate method. So we move up the
hierarchy, inside the object, to the superclass. Super does define doitAgain, so now we
know what code to execute. But the body of Super's doitAgain method says
this.doit(). Who is this?

The expression this always refers to the object on behalf of whom you are executing. At
the moment, we're executing some code in the class Super. But we are doing it for an
instance of OverridingSub; we just happen to be looking at over as though it were a
Super, just as we did when we labeled it with a Super−type name. Looking at over as a
Super doesn't make it one, though. So when we call this.doit(), we go right back
to the outside (OverridingSub) and start working our way in again, looking for a doit
method. So the effect of invoking over.doitAgain() is the same as invoking
over's doit, not the Super method.

306 Chapter 10 Inheritance

[Outside in pic]

10.2.3 Problems with Private

It isn't always completely straightforward to extend a class. Consider the BasicCounter
and Resettable Counter classes from the chapter on Designing with Objects. Because the
BasicCounter wasn't designed with inheritance in mind, there is a problem in extending
it. In fact, we have to go back and modify the BasicCounter before we can describe the
Resettable version directly in terms of it.

class BasicCounter implements Counting {

 int currentValue = 0;

 void increment() {
 this.currentValue = this.currentValue + 1;
 }

 int getValue() {
 return this.currentValue;
 }
}

To implement the Resettable Counter class, we would like to be able to write the
following:

public class Counter extends BasicCounter implements Resettable {

public Counter() {
 this.reset();
 }

 public void reset() {
 this.currentValue = 0;
 }
}

We have preserved the highlighting, and you can see that almost the entire new class is
highlighted. This says that a Counter is just like a BasicCounter except:

 It implements the Resettable interface (in addition to Counting, already
implemented by — and hence inherited from — BasicCounter).

1.

Chapter 10 Inheritance 307

 It has a no−args constructor that calls its own reset method.2.

 It has a reset method that sets its currentValue field to 0.3.

But this code is not entirely adequate. In fact, it does not compile as is. The problem is
that the currentValue field is not a part of the Counter class any more. The field
currentValue is defined in BasicCounter. But BasicCounter's currentValue field is
private, meaning that only BasicCounters (and the BasicCounter class, or factory) can
access that field. The solution is to change the visibility of the field from private to
protected. This allows the Counter subclass to access BasicCounter's currentValue field.
Now, the Counter code in this chapter does the same thing as the Counter code in the
Chapter on Designing with Objects.

The moral here is that if you want your class to be extensible — to be able to be inherited
from — you will need to make sure that subclasses can get access to anything that they
need to be able to manipulate. This in turn opens those aspects of your class up to
manipulation by other classes, since that information is no longer private. The visibility
level protected is an intermediate point between private and public, but it does not always
provide adequate protection. For details, see the chapter on Abstraction.

10.3 Constructors are Recipes

We already know that constructors give the special instructions for how to create a
particular kind of object. How does this interact with inheritance?

10.3.1 The this() Expression

When a class has more than one constructor, we can express one constructor in terms of
another using the special syntax this(). For example, we might define a Point class that
either could be instantiated using specified values for the x and y coordinates or could
take on the default value (0,0). We might define the constructors this way:

308 Chapter 10 Inheritance

public class Point {

 private int x, y;

 public Point() {
 this(0, 0);

// constructor would continue here....
 }

 public Point(int x, int y) {
 ...
 }
}

The line this(0, 0); in the first (no−args) constructor means “create me using my
other constructor and the arguments 0, 0”. In other words, when we say new
Point(), invoking the no−args constructor, this line transfers the responsibility of
providing the instructions for the construction of the Point to the two−int constructor,
supplying the ints 0 and 0 as values. Now, the second constructor would execute, creating
a Point. This new Point's construction process would continue in the first constructor at
the comment

// constructor would continue here....

The point being constructed would be the point resulting from the second constructor's
invocation on 0, 0. Since there are in fact no more instructions in the first constructor
after the comment, execution of this constructor would terminate and the new point
returned would be the point corresponding to (0, 0).

The special buck−passing constructor this() can only be used as the first line of a
constructor.

10.3.2 The super() Expression

Constructors and inheritance work similarly. Making an inherited object (the “inner
object” that belongs to the superclass) is just like passing the buck to a same−class
constructor. The first line of any constructor may be an explicit invocation of the
superclass constructor, supplying whatever arguments are necessary between the
parentheses.

For example, if we wanted to extend the CountingMonitor class, above, to determine
whether the reading of its Counting had changed since the previous reading, we could
add a field (to keep track of the previous reading) and a conditional in the act method.
But how would we deal with the constructor? The beginning of this class might read:

Chapter 10 Inheritance 309

public class ChangeDetectingCountingMonitor
 extends CountingMonitor {

 private int previousReading;

 public ChangeDetectingCountingMonitor(Counting who) {
super(who);
// ...

 }
}

The first line of this constructor says “create my inner CountingMonitor instance using
who as its constructor parameter.” When the superclass constructor completes its
execution, the remainder of the ChangeDetectingCountingMonitor constructor body is
executed, extending the CountingMonitor instance and wrapping it in whatever it needs
to be a full−fledged ChangeDetectingCountingMonitor.

10.3.3 Implicit super()

We have seen that, when no explicit constructor is supplied, Java blithely inserts a
no−args constructor. Java actually has two dirty little secrets about constructors:

 If no constructor is provided for a class, Java automatically adds a
no−arguments constructor.

1.

 Unless a constructor explicitly invokes its superclass constructor or another
(this()) constructor of the same class, Java automatically inserts
super(); as the first line of the constructor.

2.

This means that a class that doesn't seem to have a constructor actually has the following
one:

public ClassName () {
 super();
}

What does this do? It means that you can create an instance of the class with new
ClassName() — because the constructor has no parameters, so you don't have to give
it any arguments — and it also means that each instance of ClassName has an instance of
the superclass hiding inside it. That is, super(); is a special incantation that means “Make
me an instance of my superclass.” (Be careful: there are two readings of this request:
“Give me an instance...” and “Turn me into an instance...”. The second reading is
correct.)

310 Chapter 10 Inheritance

The BasicCounter class has such an implicit, automatically inserted constructor, but the
Counter class doesn't. Counter does automatically get the implicit call to super();
though:

public BasicCounter () {
 super();
}

and

public Counter() {
 super();
 this.reset();
}

You can, of course, insert this no−args make−me−an−instance−of−my−superclass
constructor into every class definition, and some people like to do so explicitly.

Details:

 super(); may only appear as the first line of a constructor.1.

 The form super(args) may be used if the superclass constructor takes
arguments.

2.

 If a constructor is defined, this constructor is not automatically added. So, for
example, Echo does not have a no−args constructor.

3.

 If a superclass does not have a no−args constructor, an explicit call to
super(args) must be used as Java's automatic insertion of super() will
cause a compile−time error.

4.

What if a class doesn't have a superclass? Every class is a subclass except Object. If a
class doesn't have an extends in its declaration, Java automatically inserts
extends Object. That means that the automatically−inserted constructor will in
general make sense. Beware: Since Java will automatically invoke the no−args version
of super() unless you explicitly invoke a superclass constructor, either (1) the superclass
must have a no−args constructor or (2) you must explicitly invoke the superclass
constructor yourself, supplying the requisite arguments. If you create a class without a
no−args constructor, you can get into trouble extending it.

Chapter 10 Inheritance 311

Style Sidebar

Explicit use of this. and super()

Although it is not strictly speaking necessary, it is good style to use this.
wherever it is appropriate, i.e., to denote calls to an object's own fields or methods.
While it makes your code somewhat more verbose, it also makes it easier to read
and to understand what's going on. No method call should ever be made without
reference to its target (i.e., whose method is being called). Field accessor
expressions should always include a reference to the field's owner, distinguishing
them from other name accesses (including parameter and local variable references).

A class declaration that does not contain an explicit extends clause still
extends Object. Stating this explicitly may make it easier to read your code.

A constructor that does not call another (this()) constructor explicitly calls the
superclass constructor. If the superclass constructor is not invoked explicitly, Java
will insert an implicit call to super(), the superclass's no−args constructor. You can
make this implicit call explicit by including super(); as the first line of any
constructor that doesn't explicitly invoke another self− or superclass constructor.
This helps to remind you that it is being called anyway.

10.3.4 Multiple Views

Can have supertype, subtype, many along type hierarchy. Also interfaces. Can have
multiple views simultaneously if multiple uses (names) have different types.

You all get the same behavior, no matter what type your reference is. Only difference is
in what you can ask for.

10.4 Interface Inheritance

A class cannot inherit from an interface; it implements the interface, providing behavior
to match the interface's specification. But one interface can extend another. Interface
inheritance is much simpler than class inheritance. In interface inheritance, the methods
and fields of the inherited (super) interface are simply combined into the methods and
fields of the inheriting (sub) interface. The syntax for interface inheritance is identical to
the syntax for class inheritance, but since there can be no overriding of method
specifications, and since all fields are public and static therefore cannot be overridden,
there is really no complexity to interface inheritance.

As with class inheritance, if one interface extends another, all instances implementing the

312 Chapter 10 Inheritance

subinterface are instances belonging to both types.

10.5 Relationships Between Types

There are three different type−to−type relationships that will be important in creating
systems. These three relationships correspond to three distinct mechanisms:
implementation, extension, and coupling. Implementation is a relationship in which one
type provides a specification and a second type provides a specific way of implementing
that specification. In this case, the first type is called an interface and the second type is
called a class. For example, an Alarm is one way of implementing the Resetable
specification; an Animation is another. Extension is a relationship in which one type adds
functionality to another. There are actually two variants of extension. In one, both types
are specifications (i.e., interfaces) and the extending specification adds commitments to
the extended specification. StartableAndResetable is an extension of Startable. In the
other, both types are implementations (i.e., classes) and the extending implementation
adds functionality to the extended implementation. A CheckingAccount adds
check−writing functionality to a BankAccount. Extension is implemented using
inheritance, the primary subject of this chapter. Coupling is a way of giving one object
the ability to ask another to help it. For example, a MicrowaveOven may have a Clock,
but a MicrowaveOven isn't a Clock. MicrowaveOven doesn't implement Clock behavior
or extend it. Each MicrowaveOven has a corresponding Clock, and when the
MicrowaveOven needs to know what time it is, it checks with its own Clock. In this case,
the relationship is one−to−one (one MicrowaveOven per Clock, one Clock per
MicrowaveOven). There are other cases in which the relationship may be many−to−one
(many Chickens, one Coop) or one−to−many.

[Footnote: Unlike extension and implementation, coupling is really a relationship
between instances; however, like implementation and extension, it is generally defined
within the class.]]

It is important to know which of these three relationships ought to hold as you design
your code.

It is always advisable to factor out common commitments and to separate the users of
these contracts from their implementors. Wherever possible, an object should be known
by an interface type rather than a class type to make it possible for alternate
implementations to be used. This is true for both name declarations and method return
types. The only time when an interface cannot be used routinely is in a construction
expression.

[Footnote: But see, e.g., the Factory pattern [GHJV] for an approach to this problem.]

Interface implementation, the result of introducing these interfaces, is generally easy to
recognize. An interface, after all, provides the contract without the actual
implementation.

Chapter 10 Inheritance 313

It is generally more difficult, especially for the novice programmer, to determine whether
it is appropriate to use inheritance or merely containment. Inheritance is actually
relatively rare (among classes) and should be used only when the new class really reuses
the complete behavior of the existing class. This is because inheritance makes the
implementation of the new class tremendously dependent on the details of the
implementation of the existing class. Coupling is a much more general mechanism. In
this case, the new kind of object simply relies on a previously existing kind of object to
provide behavior, forwarding messages on to the instance of the pre−existing class. If the
coupling relies on an interface type rather than on a class type, a different implementation
can easily be substituted.

If you are constructing a class and want to make use of behavior implemented by another
class, you must determine whether you are better off using inheritance (i.e., extension) or
coupling. Here are some questions that you should ask:

 Does this new class present to its users the full range of behavior provided by the
existing class (inheritance) or just some of that behavior (coupling)?

•

 Does this new class add behavior to the existing class (inheritance) or override it
(coupling or a common subclass)?

•

 Can instances of this new class legitimately be treated as instances of the existing
class (inheritance) or would this be inappropriate (coupling or common
interface)?

•

 Does an instance of this new class have a different lifetimes from the associated
instance of the existing class (coupling)?

•

It is only when the superclass will be wholly reused, and when the subclass really is an
extension of the implementation provided by the superclass, that inheritance should be
used. Occasionally, this justifies the use of an abstract class to encapsulate common
behavior that is extended differently by different classes.

314 Chapter 10 Inheritance

Abstract Classes

A class can have a method that is just a signature — an abstract method. In a class,
however, the abstract method must be explicitly declared abstract. (Recall that
methods in an interface are assumed to be abstract, even if they are not explicitly so
declared.)

If a class has one or more abstract methods, it isn't a complete implementation. (It
doesn't specify how to do the un−implemented method!) In this case you cannot
directly make an instance of this class. (This is like a partial recipe — you can't
cook anything edible with it, but it may be useful in building more complete
recipes. We will see how to use one recipe to build another in the chapter on
Inheritance.)

A class with one or more abstract methods is called an abstract class. You cannot
construct an instance of an abstract class.

[Footnote: Technically, a class can be abstract even if it has no abstract methods.
However, every class with at least one abstract method must be declared
abstract.]

Abstract classes can be useful when you want to specify a partial implementation.
You should not use an abstract class when you only want to specify a contract; that
is the function of an interface.

We will see examples of abstract classes in later chapters.

Chapter 10 Inheritance 315

Chapter Summary

 Inheritance is a mechanism that allows one class to reuse the implementation
provided by another.

•

 Inheritance should be used only when instances of the subclass can also
reasonably be considered instances of the superclass.

•

 A class always extends exactly one superclass. If a class does not explicitly
extend another, it implicitly extends the class Object.

•

 Method lookup always begins with an object's actual (most specific sub)class,
even when the method is invoked by a this. expression in superclass code.

•

 A superclass method or (non−private) field can be accessed using a super.
expression.

•

 If a constructor does not explicitly invoke another (this() or super()
constructor, it implicitly invokes the superclass's no−args constructor.

•

316 Chapter 10 Inheritance

Exercises

 In the first interlude, we wrote “UpperCaser extends StringTransformer.”
Explain.

1.

 Extend the Counter to count by 2.2.

 Complete the definition of ChangeDetectingCountingMonitor from above.3.

 In this exercise, you will re−implement AnimateTimer in two different ways and
then compare them.

 Re−implement Timer by extending Counter.a.

 Extend the class in the previous exercise by making it Animate.b.

 Now re−implement AnimateTimer by extending AnimateObject directly.c.

 What if any type relations would exist between an instance of the class
produced in (b) and the class produced in (c)?

d.

4.

Chapter 10 Inheritance 317

318 Chapter 10 Inheritance

Chapter 11

 When Things Go Wrong:
Exceptions

Chapter Overview

 What happens when something goes wrong?•

 How do I create alternate ways to handle atypical circumstances?•

This chapter covers mechanisms for dealing with atypical behavior. Sometimes,
exceptional circumstances arise and require different mechanisms to cope with them. In
this case, the normal entity−to−entity communication in your system may need to be
interrupted. Java provides certain mechanisms for creating alternate paths through your
community. These include the throw and catch statements as well as special Exception
objects that keep track of these atypical circumstances.

This chapter includes sidebars on the syntactic and semantic details of throw and
catch statements, Exception objects, and the requirement to declare exceptions thrown.
It is supplemented by portions of the reference charts on Java methods and statements.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Objectives of this Chapter

 To be able to read, understand, and write throws clauses as a part of interface
and class contracts.

1.

 To learn how to throw and catch Exceptions and other Throwables.2.

 To appreciate the role that anticipating exceptional circumstances plays in the
design and testing of programs.

3.

11.1 Exceptional Events

So far, the code that we have written has addressed “normal” situations in which nothing
goes wrong. But sometimes, unusual things happen in our code, and we have to deal with
them. In some cases, these unusual things are unexpected errors; in others, their existence
is predictable but we may not know in advance when they are likely to happen. An
example of this second kind is a network outage, which happens from time to time and
can reasonably be anticipated, but is unexpected when it occurs. Planning for these
exceptional circumstances and writing code that can cope with them is an important part
of robust coding.

11.1.1 When Things Go Wrong

Consider the following example, drawn from the StringTransformers application of the
first interlude. In that scenario, entities called StringTransformers are connected by “tin
can telephone” entities called Connections . Each Connection has an end that you can put
something into and an end that produces what you put into it. A StringTransformer can
write to (or read from) a Connection if it is holding the appropriate end. In the user
interface of that application, there is a way that a user can specify two
StringTransformers to be connected. We are going to look in more detail at how the
Connection actually gets attached to these two StringTransformers.

Let's say that the two transformers we're going to connect are transformerA and
transformerB. In the code that is making the connection, we invoke the specific
Connection constructor with these transformers as arguments:

320 Chapter 11 When Things Go Wrong: Exceptions

new StringConnection(transformerA, transformerB)

The constructor code for StringConnection asks each of the transformers, in turn, to
accept a(n input or output) connection. In fact, strictly speaking, transformerA and
transformerB need not be StringTransformers at all; they need only implement the
OutputAcceptor or InputAcceptor interfaces, since that is the only aspect of their
behavior that we rely on here:

public StringConnection(OutputAcceptor a, InputAcceptor b) {
 a.acceptOutputConnection(this);
 b.acceptInputConnection(this);
}

This code is perfectly reasonable assuming that everything goes right. But what happens
if transformerA already has an OutputConnection in place? It might be that transformerA
is a Broadcaster or AlternatingOutputter or some other kind of transformer that can have
many OutputConnections. It might be that transformerA is willing to throw away its
existing OutputConnection and replace it with the one currently on offer. But it might
also quite reasonably be that transformerA is unwilling and unable to accept an
OutputConnection if it already has one in place. In this case, the StringConnection
constructor code is in trouble.

This is precisely the sort of situation that we will deal with in this chapter. Something has
gone wrong. We can anticipate in our design that this might happen. We want our code to
respond appropriately. In other words, we want to design our programs to be able to
handle exceptional circumstances.

11.1.2 Expecting the Unexpected

When you are designing a program, it is relatively easy to think about what is supposed
to happen. You can act out the interactions that you want your program to have. You can
draw out storyboards describing what comes next. You design interfaces and protocols to
describe the roles each entity plays and the contracts it makes with others. But this is not
enough.

In addition to figuring out what ought to happen, you also need to anticipate what might
happen. That is, you need to understand what happens if a component does something
unexpected; if the user does something foolish; if a resource that you depend on becomes
unavailable or temporarily out of service; or even if a change that you make to your code
inadvertently violates an assumption. In all of these cases, unexpected behavior of one
portion of the system needs to be dealt with. Good design involves anticipating these
possibilities and explicitly deciding what to do and designing for these circumstances.

Chapter 11 When Things Go Wrong: Exceptions 321

Exceptional circumstances can be partitioned into three groups. One is the catastrophic
failure. In case of a catastrophic failure, there's really nothing that your program can do.
This might happen, for example, if someone tripped over the power cord of the computer
on which your program was running. In this case, it is reasonable to expect that your
computer program will stop executing immediately. There's really nothing that you can
do about a catastrophic failure.

[Footnote: At least at the time of failure. There are still things that you can do to plan for
recovery from catastrophic failure. For example, a banking system may temporarily lose
the functioning of an ATM, but it will not lose track of your bank balance entirely. It has
been designed to keep this information safe even in the face of computer crashes.]

The second kind of exceptional circumstance is at the other end of the spectrum. This is a
situation that is not the intended course of your program, but is so benign that it is dealt
with almost as a matter of course. These are the unexpected situations that can be handled
with a simple conditional or other testing mechanisms. For example, if we are about to
perform a division operator, we might check to make sure that the divisor is not 0. In the
extreme, these situations can be difficult to distinguish from “normal” operation.

Most exceptional circumstances fall between these two extremes. That is, they admit
some intervention or even solution (unlike catastrophic failure), but handling these
circumstances requires cooperation among entities or other additional complexity; it isn't
possible or desirable to deal with this situation locally. These are the situations that you
must take into account in your design.

When you are planning your program, you will be deciding how to partition the problem
among a community of interacting entities and designing how these entities interact. At
this point, you should also ask:

 What should happen if one of these entities is unreachable?•

 What are all of the ways in which an entity might violate expectations?•

 What should happen in each of these cases?•

 What should an entity do if it has difficulty fulfilling its contract?•

In each of these cases, you should decide whether the circumstance amounts to a
catastrophic failure or can be handled by another entity. If it is a catastrophic failure, this
circumstance ought to be documented; if not, it provides another set of interactions to
build into your system. This exception handling becomes another part of your system
design.

As you break each entity down — asking what is inside it, decomposing it into further
communities of interacting entities — you should repeat these questions with respect to

322 Chapter 11 When Things Go Wrong: Exceptions

these entities' mutual commitments. Eventually, you will decompose your problem to the
level of individual operations and of interactions with entities outside the system that you
are actually building. For these situations, you should ask:

 In what ways might this operation or outside entity fail?•

 How else might it violate my expectations?•

 Can I test for these circumstances prior to invocation of this operation or
resource?

•

 What should I do if the failure or expectation violation occurs?•

If the situation is one that can be ruled out using a simple test — such as checking for a
zero divisor or verifying that the user's input is a legal value and asking for new input if
not — such error checking should be introduced into your design. This strengthens the
contracts that entities make with one another. Where violations cannot be handled locally,
you will need to decide who should handle the issue and how it should behave.

11.1.3 What's Important to Record

At the time that an exceptional circumstance arises, the currently executing code is in the
best position to determine what the problem is. It should take pains to record any
information that might help other parts of the program (or a human user or debugger)
figure out what happened. So, for example, in the case of a divide−by−zero error, it
would be important to know what the expression was whose value was zero, causing the
error. In the case of an invalid value entered by a user, it may be important to know what
the invalid value is or what the legal values might be. It is also important to know what
kind of thing went wrong: division by zero or illegal argument passed to a method or a
label name that's null and shouldn't be or any of a whole host of possible values.

This information — what kind of thing went wrong and kind−specific additional
information that might be useful for figuring out what the problem was or correcting it —
is, in Java, encapsulated in a special kind of object. These are Exception objects. They
signal what's gone wrong. There are many different (more specific) types of Exception
objects, such as NullPointerException or IllegalArgumentException. You can also
define Exception types of your own (using inheritance). In addition to Exception, Java
also defines a (similar but distinct) class of Errors, meant to designate conditions of
catastrophic failure, such as NoClassDefFoundError. You can (but rarely will) define
your own Errors as well.

Since Exceptions are objects, you can use them like any other object. If you define your
own Exception classes, you can add any fields or methods that you think might be
important to allow your program to handle the exceptional circumstance. One thing that
is especially useful for an Exception to have is a String (suitable for printing to a user)

Chapter 11 When Things Go Wrong: Exceptions 323

that explains something about what has gone wrong. In Java's Exception classes, such a
String can be supplied to the constructor and retrieved using the instance's getMessage
method.

It can also be very important to know where the problem occurred. Java's Exception
classes record the point at which they were thrown (see below), but it can in addition be
useful to record (e.g., in the message or in an additional field that you define) some
program−specific indication of which code is reporting the exceptional circumstance and
what it was trying to do when the exception occurred.

For example, in our OutputAcceptor code, we might recognize that we can't accept an
OutputConnection if we already have one. In this case, we might create a new
ConnectionRejectedException recording this circumstance:

new ConnectionRejectedException(this.toString()
 + “ rejecting redundant OutputConnection”)

The ConnectionRejectedException uses the toString method of the OutputAcceptor
within which this code occurs to record who is rejecting the connection. An alternative is
just to list the class name and method in a constant String:

“OutputAcceptor.acceptOutputConnection(): ”

The ConnectionRejectedException might also record the existing OutputConnection and
the newly supplied one; in the code fragment above, it does not do this.

Just defining a new exception isn't enough, though. Defining an exception is like
composing a letter of complaint. In order for it to have any effect, you have to send out
the letter. In the case of an Exception, this is accomplished by throwing the Exception.

11.2 Throwing an Exception

An Exception is an unusual circumstance that requires special handling. In order to
understand how an Exception works — and what it means to throw one — we first need
to look at how method invocation and return normally works.

Let us begin by looking more closely at what happens in our new Connection example,
when the user interface calls the StringConnection constructor, which in turn calls the
OutputAcceptor's acceptOutputConnection method. We might diagram the normal
control flow as follows:

324 Chapter 11 When Things Go Wrong: Exceptions

User Interface
StringConnection

constructor
OutputAcceptor

1. ————————>

2. ————————>

3. (records Connection)

4. <————————

5. (more activity)

6. <————————

The code from the User Interface invokes the StringConnection constructor, then the
StringConnection constructor invokes the OutputAcceptor's acceptOutputConnection
method. When the acceptOutputConnection method completes, it returns (nothing) to the
StringConnection's constructor, which completes its work and provides the newly
constructed StringConnection to the User Interface. These arrows are sometimes called
the call path (and return path) of this execution.

Communication among pieces of code is very simple. Each piece of code can only talk to
the other pieces of code about which it knows. In this case, the User Interface knows
about the StringConnection's constructor, and the StringConnection's constructor knows
about the OutputAcceptor's acceptOutputConnection method. Think of it like an
old−fashioned fire−fighting bucket brigade. All of the people line up from the water
supply to the fire. A full bucket is passed from hand to hand down the line from the water
supply to the fire. The empty bucket must be passed back the same way. In the normal
motion of buckets, there is no way for a bucket to skip over a person; it must be passed
from hand to hand, returning the way that it came.

[Footnote: In this example, the “more activity” line inside the constructor is a shorthand
for a more complex picture. This “more activity” actually involves another method call,
this one to the InputAcceptor's acceptInputConnection method. So the whole picture is
more accurately represented as:

Chapter 11 When Things Go Wrong: Exceptions 325

User
Interface

StringConnection
constructor

OutputAcceptor InputAcceptor

1. ———————>

2. ———————>

3.
(records

Connection)

4. <———————

5. ————————————————>

6.
(records

Connection)

7. <————————————————

8. <———————

This doesn't violate the bucket brigade idea, but it does mean that the bucket brigade has
a fork in it. The constructor can pass buckets to (i.e., invoke) both the OutputAcceptor's
acceptOutputConnection method and the InputAcceptor's acceptInputConnection
method.]

[Insert bucket brigade (throw versus normal method invocation) pic]

Throwing an Exception is different. What happens in this case looks more like the
following:

User Interface
StringConnection

constructor
OutputAcceptor

1. ————————>

2. ————————>

3. OH NO!!

When the OutputAcceptor's acceptOutputConnection method realizes that it has a
problem it generates an Exception object, as we have seen above. Then, it throws the
exception as hard as it can back the way it came. The Exception zooms back along the

326 Chapter 11 When Things Go Wrong: Exceptions

call path, flying too fast to stop and execute any statements waiting for its return. In fact,
the Exception keeps going until it encounters a compatible catch statement. If
necessary, it may exit several method bodies. Or, if the catch is in the same block as the
throw, it may not exit any method bodies at all. In other words, a throw statement sets
an Exception flying, and the flying Exception can only be caught by a matching catch
statement; no other intervening statement along the call path matters.

This is, in fact, just what we want. If the OutputAcceptor can't accept an output
connection, we don't want the rest of the StringConnection's constructor to execute. For
example, we don't want it to try to convince the InputAcceptor to accept the input end of
the connection, because this connection isn't going to work out (since the OutputAcceptor
isn't cooperating) and if the InputConnection accepts this one, then it won't later be able
to accept a fully operational input connection. So when the OutputAcceptor decides that
it has a problem, we want the Exception to propagate all the way back to the User
Interface code, which should decide that connecting this particular pair of
StringTransformers may not be such a good idea after all.

The code for the OutputAcceptor might look like this:

public class ... implements OutputAcceptor {

 private OutputConnection out;

 public void acceptOutputConnection(OutputConnection out) {
 if (this.out == null) {
 this.out = out;
 } else {
 throw new ConnectionRejectedException(
 this.toString()
 +
 “ rejecting redundant OutputConnection”);
 }
 }
}

This example introduces a new statement type, throw, and a new declaration element,
throws. (Note the s on the declaration element.) The throw statement works just as we
have described; it abruptly terminates the execution of this method and causes the
Exception to propagate backwards along the return path until a compatible catch
statement is encountered. (We will see this below.)

What about the throws clause? Throwing an exception is actually part of the contract
that one object makes with another. It is as much a part of a method's contract as its
(normal) return type or the parameters it needs. So a method must declare that it may
throw an exception (and what type of exception it may throw). This way, anyone calling
the method knows to be prepared for it to throw this exception. The throws clause is

Chapter 11 When Things Go Wrong: Exceptions 327

the final part of a method signature, and throws clauses may appear in interface
(abstract) method declarations as well as in method definitions.

Throws clauses are not restricted to methods. Constructors, too, must declare any
exceptions that they throw. A constructor can explicitly throw an exception using a
throw statement. A constructor (or method) can also throw an exception by calling
something that throws an exception and then not catching it. This is what happens with
the StringConnection constructor. Here it is, reprinted from above, with the added
throws clause italicized.

public StringConnection(OutputAcceptor a, InputAcceptor b)
throws ConnectionRejectedException {

 a.acceptOutputConnection(this);
 b.acceptInputConnection(this);
}

The StringConnection constructor invokes OutputAcceptor's acceptOutputConnection
method. If the OutputAcceptor doesn't accept the output connection, the
StringConnection constructor isn't going to be able to fix this. So the StringConnection
constructor should itself exit abruptly. In other words, the Exception thrown by
acceptOutputConnection flies right out of the StringConnection constructor as well, still
waiting to find a compatible catch clause.

328 Chapter 11 When Things Go Wrong: Exceptions

Throw Statements and Throws Clauses

A throw statement looks a lot like a return statement, but it always takes an
argument (which can be in parentheses or not), and its argument must be something
legal to throw. Anything that extends Throwable is legal to throw. In
particular, this includes anything that extends Exception.

The effect of a throw statement is that execution abruptly returns up the call path
until a compatible catch clause is encountered. Nothing except a compatible catch
clause can stop the propagation of a thrown object.

If an Exception (except a RuntimeException) is thrown and not caught within a
method or constructor body, you must also declare that that method or constructor
throws the Exception. This is a part of the signature, like saying what a method
returns or what arguments a method or constructor expects.

The throws clause appears after the argument list, but before the
method/constructor body. The syntax for a throws clause is

throws ExceptionType1, ExceptionType2, ... ExceptionTypeN

Every exception thrown and not caught within the body must match (at least) one of
the exception types declared thrown by the method or constructor. If the method or
constructor throws only a single exception type, the list contains no commas.

11.3 Catching an Exception

We have seen how an exception can be generated and thrown. We have also seen that a
thrown exception keeps flying until it encounters a compatible catch statement. Now,
we will look at catch statements and how they work. This code introduces new syntax:
the try/catch statement type. If throws is syntactically like return, then
try/catch is a bit like if/else.

A catch statement is properly a try/catch statement (or even more properly a
try/catch/finally statement). If you are about to execute a statement that might
throw an exception that you'd like to catch, you must first enter a try block. This is just
like a regular block, except that it is preceded by the Java keyword try. This notifies
Java that exceptions may be thrown and that it should be on the lookout for the ones that
you want to catch.

Chapter 11 When Things Go Wrong: Exceptions 329

At the end of the possible−exception−throwing code, you end the try block and
introduce a catch clause. A catch clause contains a parameter declaration of the type
that you wish to catch. The catch clause has a block that describes the instructions to
execute if one of these is caught.

For example, the code in the User Interface that is trying to connect transformerA (here
named by to) and transformerB (here named by from) might say:

try {
 new StringConnection(to, from);
} catch (ConnectionRejectedException e) {
 Console.println(“Sorry, can't make that connection.”
 + “ Please try again.”);
}

 This try/catch statement type has two bodies: one after the keyword try,
and one after the catch parameter.

•

 The try body is a statement or set of statements that may throw an exception. In
this case, we know that the StringConnection constructor may throw
ConnectionRejectedException. We can tell this from its declaration, and so can
the Java compiler.

•

 The catch portion of the statement has a single parameter, the exception that is
to be caught, written in the usual Type−of−thing Name−of−thing syntax. In this
case, the exception type is ConnectionRejectedException, and the name of the
exception is e. The name is required, and it may be used inside the catch body,
just like a method parameter name can be used inside the method body. It is
common to name the exception e, though there's no particular reason for it; it's
just like loop variables are often named i.

•

 The catch body contains statements which are executed if and only if the
appropriate type of exception is thrown. (The “appropriate type” is the type of the
catch's parameter.) Inside the catch body, the parameter name may be used to
refer to the exception, though there isn't a whole lot you can do with an exception
other than print its message.

•

In this case, once the exception is caught, a message is printed to the user. This statement
might itself appear inside an animate object's act method, so that something is continually
listening to the user and trying to make connections on the user's behalf. This message
lets the user know that this particular attempt didn't work. If we had supplied additional
information along with the exception, we might use it at this point to give the user more
information (perhaps flashing the object that refused the connection) or to try to repair the
situation (asking whether the user means to delete the existing connection, for example,

330 Chapter 11 When Things Go Wrong: Exceptions

and then retrying the connection creation).

One try can actually have several catch statements. In this case, once something is
thrown inside the try body, it is compared against the catch parameter statements in
order until one that matches is found. If a match is found, only the first matching catch
body is executed; then control continues at the end of the try/catch statement. If no
match is found, the thrown object continues exiting statement blocks until a
corresponding catch is found.

For completeness's sake, it is worth mentioning that a try/catch statement can have a
finally clause (so that it's really try{}catch(){}finally{}). In this case, no matter how the
statement is exited — regardless of whether something is thrown, and regardless of
whether the thrown object is caught — the finally statement will be executed. At this
point, you shouldn't need to be using finally, but if you ever need to know, the gory
details are included in the Java language specification.

Try Statement Syntax

A try/catch/finally statement has a body after try, a body after each catch clause,
and a body after the finally clause if it is present. Each of these bodies is a normal
block executed according to the usual block execution rules. If a catch block is
executed (i.e., if a matching Throwable has been caught), the catch parameter is
bound to the caught object during execution of the catch block.

The try body is a statement or set of statements that may throw an exception.
Although not every execution of the try statement must throw an exception, the
try statement must contain at least one expression that is declared as throwing
each of the types of exceptions listed in its catch clauses.

Each catch clause has a single parameter (type and name) followed by a block. A
catch clause matches the thrown object exactly when the thrown object can be
named by a name of the catch clause's parameter type. Only the first matching catch
clause is executed.

The try statement is executed as follows:

 The try block is executed in order until something is thrown or the end of
the try body is reached.

•

 If nothing is thrown during the try body, execution continues after the
final catch clause of the try/catch statement.

•

Chapter 11 When Things Go Wrong: Exceptions 331

http://java.sun.com:80/doc/language_specification/14.doc.html#236653
http://java.sun.com:80/doc/language_specification/14.doc.html#236653
http://java.sun.com:80/doc/language_specification/index.html

 If something is thrown during the try body, it is compared against the
parameter of each catch block, in turn, until a match is found. In this case,
that catch block is executed (as a normal block) with the parameter bound
to the (matching) caught object. At most one catch block of a try
statement is executed.

•

A try statement may also have a single optional finally clause. This is the
keyword finally followed by a block. If the try statement is entered, the
finally clause is always executed. This leads to somewhat complicated
execution rules, described below and further documented in Java's language
specification. Keyword finally clauses are largely outside the scope of this book
and are included here only for completeness.

The following two points explain the special behavior of try statements with
finally blocks:

 After execution of at most one matching catch block, execution proceeds
at the finally block (if it is present). If a try statement is entered, its
finally block is always executed, regardless of the execution within the
try statement.

•

 If no uncaught exceptions remain on exiting the finally block, execution
proceeds after the end of the try/catch/finally statement. If there is
an outstanding thrown object, execution proceeds with the continued flight
of that Throwable.

•

11.4 Throw versus Return

There are both similarities and differences between throw and return statement types.
Both involve a single Thread following instructions that may take it from one method or
constructor to another, often moving across multiple objects. From the perspective of the
Thread , the objects (and their methods and constructors) are providing roles that it plays,
scripts that it reads, or instructions that it follows.

When a Thread is executing some instructions and reaches a method invocation
expression (or an instance creation expression), it carefully records its current place in the
script, puts the current script down on the table in front of it, and picks up the invoked
method script. If fulfilling that expression in turn involves a further invocation, yet
another script will be added to the pile on the table. When an invocation completes, the
Thread puts the corresponding script away and returns to the carefully marked pending
method invocation (or instance creation) expression on top of the pile.

332 Chapter 11 When Things Go Wrong: Exceptions

http://java.sun.com:80/doc/language_specification/index.html
http://java.sun.com:80/doc/language_specification/index.html

In other words, to clear off the pile, the Thread must pick up each script in order on its
way out and complete any remaining instructions before going on to the next. Every
method invocation or instance creation expression eventually returns control to the body
of code from which the call was invoked. The Thread eventually returns to the carefully
marked spot and continues from there.

A major difference between return and throw statements is in how this execution
proceeds, i.e., whether the Thread continues executing one instruction at a time or simply
flies over the instructions looking for a matching catch statement. When a Thread
returns normally from a method, execution continues one instruction at a time. When a
Thread encounters a throw statement, it steps back through its pile of carefully marked
scripts rather rapidly, scanning down the instructions until an appropriate catch
statement is encountered. If the current script doesn't contain a matching catch
statement, it is summarily discarded and the next script is examined in turn.

This means that a return statement always causes the current method to complete,
returning control to whomever called this method. This is true no matter how many
statement blocks the return is buried inside. A return always exits exactly one
method invocation.

In contrast, a throw exits one block at a time until a catch of the appropriate type is
found. This means that a throw may not exit any methods (if the throw occurs directly
inside an appropriate try/catch), or the throw may exit many methods (if the
exception is not caught in any of these calling methods). A throw exits blocks until an
appropriate catch is encountered.

Chapter 11 When Things Go Wrong: Exceptions 333

Exceptions, Errors, and RuntimeExceptions

In Java, any instance whose class extends the class Throwable can be thrown and
caught. Two special subclasses of Throwable are defined for use under exceptional
circumstances:

 Error is the Java class that denotes a catastrophic failure. This is an event
from which your program is not expected to be able to recover. A
well−designed robust program that is expected to have an extended lifetime
(such as a banking system or an airline reservation system) must have ways
of dealing with catastrophic failure, but most programs that you write will
not have to worry about such circumstances.

•

 Exception is the Java class that indicates a non−catastrophic failure.
Exceptions are circumstances from which your program should recover (or
at least exit gracefully).

•

All Java built−in Error and Exception classes have two constructors, one that takes
no arguments and one that takes a single String argument. This String can be
accessed using the getMessage method of Error or Exception. If you define your
own subclass, it is a good idea to define these two constructors there as well.

RuntimeException is a special subclass of Exception. RuntimeExceptions are
circumstances from which your program should recover, but — unlike for other
Exceptions — methods and constructors throwing RuntimeExceptions do not have
to declare this fact.

All Exceptions other than RuntimeExceptions are called checked exceptions. A
method or constructor that may throw a checked exception must declare this fact,
allowing the compiler to check for the presence of exception handlers. This can be
very helpful in debugging, so you will generally want to extend Exception rather
than RuntimeException.

When overriding a superclass method, a subclass method may only throw those
checked exceptions also declared by the (overridden) superclass method. In other
words, an overriding method may throw fewer things than promised by its
superclass, but it may not throw additional (checked) things.

11.5 Designing Good Test Cases

One of the most important parts of being a good programmer is knowing how to test your
code. To begin this phase, write down all of the assumptions that your code makes. Think
of something that violates one of these assumptions; will this break your code? How

334 Chapter 11 When Things Go Wrong: Exceptions

about something that violates three of these assumptions?

Once you have all of your assumptions written down, think about things that are extreme
but within your assumptions. Try to design test cases for these. Think of every feature
your code has, and every situation in which this feature could possibly be exercised.
Design test cases for these as well. And don't forget the simple cases; it is always worth
testing these as well as the pathological ones.

Your goal should be to test your code thoroughly and exhaustively, so you should design
your test suite to exercise your program as fully as possible. You should also design test
cases to catch bugs you think that other people might make. In particular, you should try
to identify any weaknesses or difficult cases and design examples that stress these
elements.

Finally, you should keep this test suite around, so that as you modify your code, you can
test it again on these same examples, making sure that it still handles all of the old cases.
This is called regression testing.

Chapter 11 When Things Go Wrong: Exceptions 335

Chapter Summary

 In designing a program, you should anticipate things that can go wrong and
design in mechanisms to deal with them.

 Catastrophic failures cannot be prevented, but certain systems need to
design in mechanisms to minimize the damage that they cause.

♦

 Some failures can be anticipated and avoided through simple checks and
guards.

♦

 Other failures must be handled as they arise, often using Java's exception
handling mechanisms.

♦

•

 Exceptions should record information that is useful for addressing the problem as
well as information that is useful for advising the debugger or the human user.

•

 When an exception is thrown by a method or constructor, it exits each enclosing
block in turn until a matching catch statement is encountered.

•

 Methods and constructors that may throw checked exception types must declare
this fact in their signatures.

•

 A method invocation or constructor that may throw a checked exception may be
safely invoked within a try block with a corresponding catch statement. The
catch statement is responsible for attempting to recover from the exception.

•

336 Chapter 11 When Things Go Wrong: Exceptions

Exercises

 Describe the process of baking a cake. Include at least three exceptional
circumstances that might arise and how these should be handled.

1.

 Describe the normal conduct of a soccer game. Include at least three exceptional
circumstances that might arise and how these should be handled.

2.

 Define an Exception type called UnbelievableException. Remember to define
two constructors.

3.

 Using your UnbelievableException type, write an animate object that continually
asks the user for the user's age, then throws an UnbelievableException if
appropriate. Note: the presence of an unbelievable age should not cause the
program to terminate.

4.

Chapter 11 When Things Go Wrong: Exceptions 337

338 Chapter 11 When Things Go Wrong: Exceptions

Part 4

Refining Interactions

340 Part 4 Refining Interactions

Chapter 12

 Dealing with Difference:
Dispatch

Chapter Overview

 How can I do different things at different times or under different circumstances?•

 How can one method respond appropriately to many different inputs?•

In previous chapters, we have looked at entities that respond to each input in roughly the
same way. In this chapter, we will look at how an entity can respond differently
depending on its input. In particular, we will look at how to build the central control loop
of an entity whose job is to dispatch control to one of a set of internal “helper”
procedures.

This chapter introduces several mechanisms for an entity to generate different behavior
under different circumstances. Conditionals allow you to specify that a certain piece of
code should only be executed under certain circumstances. This allows you to prevent
potentially dangerous operations — such as dividing by zero — as well as to provide
variant behavior.

The decision of how to respond often depends on the value of a particular expression. If
there are a fixed finite number of possible values, and if the type of this expression is
integral, we can use a special construct called a switch statement to handle the various
options efficiently. A switch statement is often used together with symbolic constants,
names whose most important property is that each one can be distinguished from the
others.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Arrays are specialized collections of things. They allow you to treat a whole group of
things uniformly. Arrays can be used to create conditional behavior under certain
circumstances.

Procedural abstraction (covered in the next chapter) also plays a crucial role in
designing good dispatch structures.

This chapter includes sidebars on the syntactic and semantic details of if, switch , and
for statements, arrays, and constants. It is supplemented by portions of the reference
chart on Java Statements.

Objectives of this Chapter

 To understand what dispatch is, and its relationship to the central control loop.1.

 To understand several mechanisms for dispatch: if−else statements, switch
statements, and arrays.

2.

 To know when to choose which mechanism, and why.3.

 To appreciate the value of symbolic constants.4.

 To gain a deeper understanding of conditionals (e.g., by looking at cascaded
conditionals).

5.

 To gain a deeper understanding of loops (e.g., by looking at for loops).6.

 To understand arrays: how to declare them, define them, and use them for simple
iteration and for dispatch.

7.

12.1 Conditional Behavior

The animate objects that we have seen so far generally execute the same instructions over
and over. A clock ticks off the time. A StringTransformer reads a string, transforms it,
and writes it out. A web browser receives a url request, fetches, and displays the web
page. And so on. These entities repeatedly execute what we might call a central control
loop, an infinitely repeated sequence of action.

In this chapter, we look instead at entities whose responses vary from one input to the
next, based on properties of that input. The actual responses are not the subject of this
chapter; instead, we will largely assume that the object in question has methods to
provide those behaviors. The topic of this chapter is how the central control loop selects

342 Chapter 12 Dealing with Difference: Dispatch

among these methods. This function — deciding how to respond by considering the value
that you have been asked to respond to — is called dispatch.

Imagine that we are building a calculator. One part of the calculator — its graphical user
interface, or GUI — might keep a list of the buttons pressed, in order. The central
controller might loop, each time asking the GUI for the next button pressed. The primary
job of this central control loop would be to select the appropriate action to take depending
on what kind of button was pressed, and then to dispatch control to this action−taker.

For example, when a digit button is pressed, the calculator should display this digit,
perhaps along with previously pressed numbers.

[Footnote: Pressing 6 right after you turn on a calculator is different from pressing 6 after
pressing 1 right after you turn on a calculator. In the first case, the calculator displays 6;
in the second, it displays 16.]

Pressing an arithmetic function key — such as + or * — means that subsequent digits
should be treated as a new number — the second operand of the arithmetic operator —
rather than as additional digits on the first. Pressing = causes the calculator to do
arithmetic. And so on.

In this example, the calculator's central control loop is behaving like a middle manager.
It's not the boss, who gets to set direction. It's not the worker, who actually does what
needs to be done. The dispatcher is there to see that the boss's directions (the button
pressed) get translated into the appropriate action (the helper procedure). The dispatcher
is simply directing traffic. This kind of behavior, in which different things happen under
different circumstances, requires conditional behavior. We have already seen a simple
kind of conditional behavior using Java's if statement. In this chapter, we explore
several different means of achieving conditional behavior in greater detail.

Throughout this chapter, we will assume that we have methods that actually provide this
behavior. For example, the calculator might have a processDigitButton method which
would react appropriately when a number key is pressed. Another method,
processOperatorButton, would apply the appropriate operation to combine the value
currently showing on the calculator's display with the number about to be entered. We
will also use methods such as isDigitButton to test whether a particular buttonID
corresponds to a number key. Separating the logic surrounding the use of these operations
from their implementation is an important part of good design and the topic of much of
Chapter 13, Encapsulation.

In this chapter, we are going to concern ourselves with what comes after the first line of
the calculator's act method:

Chapter 12 Dealing with Difference: Dispatch 343

public void act() {
SomeType buttonID = this.gui.getButton();

 ...
}

The remainder of this method should contain code that calls, e.g., processDigitButton if
buttonID corresponds to one of the buttons for digits 0 through 9, or
processOperatorButton if buttonID corresponds to the button for addition. This chapter is
about deciding which of these is the correct thing to do.

12.2 Keywords if and else

We have already seen the if statement, Java's most general conditional. Almost every
programming language has a similar statement type. An if statement is a compound
statement involving a test expression and a body that can include arbitrary statements.
Any conditional behavior that can be obtained in Java can be accomplished using (one or
more) if statements. An if statement corresponds closely to normal use of conditional
sentences in every−day language. For example, “If it is raining out, take an umbrella with
you” is a sentence that tells you what to do when there's rain. Note that this sentence says
nothing about what to do if there is no rain.

12.2.1 Basic Form

Every if statement involves two parts: the test expression and the consequent
statement. The test expression represents the condition under which the consequent
should be done. The test expression is some expression whose type must be boolean. In
our example sentence, this boolean expression is “it is raining out.” This expression is
either true or false at any given time,

[Footnote: Excluding that sort of grey dreary drippy weather that haunts London and
certain times of the year in Maine, of course.]

making it a natural language analog to a true−or−false boolean. In Java, this expression
must be wrapped in parentheses.

When an if statement is executed, this conditional expression is evaluated, i.e., its value
is computed. This value is either true or false . The evaluation of the boolean test
expression is always the first step in executing an if statement. The rest of the execution
of the if statement depends on whether this test condition is true or false .

In the English example above, if “it is raining out” is true — i.e., if it is raining out at the
time that the sentence is spoken — then you should take an umbrella with you. That is, if
the condition is true, you should do the next part of the statement. This part of the if
statement — the part that you do if the test expression's value is true — is called the

344 Chapter 12 Dealing with Difference: Dispatch

consequent.

In Java, execution of an if statement works the same way. First, evaluate the boolean
test. If the value of the test expression is true, then execute the consequent. If the value
of the test expression is false , the consequent is not executed. In this case, evaluating
the test expression is the only thing that happens during the execution of the if
statement. Note that the value of the expression that matters is its value at the time of its
evaluation. If the test is executed at two different times, it may well have two different
values at those times.

In Java, the consequent may be any arbitrary statement (including a block). In this book,
we will always assume that the consequent is a block, i.e., a set of one or more statements
enclosed in braces.

[Pic of if execution path]

We could write pseudo−code for our English conditional as follows:

if (currentWeather.isRaining()) {
 this.take(umbrella);
}

This isn't runnable code, of course, but it does illustrate the syntax of a basic if
statement: the keyword if, followed by a boolean expression wrapped in parentheses,
followed by a block containing one or more statements. To execute it, we would first
evaluate the (presumably boolean) expression

currentWeather.isRaining()

(perhaps by looking out the window) and then, depending on whether it is raining, either
take an umbrella, i.e., execute

this.take(umbrella)

Chapter 12 Dealing with Difference: Dispatch 345

or skip it.

A somewhat more realistic example is the following code to replace a previously defined
number, x, with its absolute value:

if (x < 0) {
 x = − x;
}

This code does nothing just in case x is greater than or equal to 0.

[Footnote: It evaluates the expression x < 0, of course, but it “does nothing” that has
any lasting effect.]

If x happens to be less than 0, the value of x is changed so that x now refers to its additive
inverse, i.e., its absolute value.

Note that the same if statement may be executed repeatedly, and the value of the
boolean test expression may differ from one execution of the if statement to the next.
(For example, it may be raining today but not tomorrow, so you should take your
umbrella today but not tomorrow.) The value of the boolean test expression is checked
exactly once each time the if statement is executed, as the first step of the statement's
execution.

12.2.2 The else Keyword

The if statement as described above either executes its consequent or doesn't, depending
on the state of the boolean test expression at the time that the if statement is executed.
Often, we don't want to decide whether (or not) to do something; instead, we want to
decide which of two things to do. For example, if it's raining, we should take an umbrella;
otherwise, we should take sunglasses. We could express this using two if statements:

if (currentWeather.isRaining()) {
 this.take(umbrella);
}

if (! (currentWeather.isRaining())) {
 this.take(sunglasses);
}

Recall that ! is the Java operator whose value is the boolean opposite of its single
argument. So if

346 Chapter 12 Dealing with Difference: Dispatch

currentWeather.isRaining()

is true, then

! (currentWeather.isRaining())

is false; if

currentWeather.isRaining()

is false, then

! (currentWeather.isRaining())

is true.

These two conditional statements, one after the other, are intended to express alternatives.
But they don't, really. For example, the two statements each check the boolean condition
currentWeather.isRaining(). This is like looking out the window twice. In
fact, the answer in each of these cases might be different. If we don't get around to
executing the second if statement (i.e., looking out the window the second time) for a
little while, the weather might well have changed and we'd find ourselves without either
umbrella or sunglasses (or with both). The weather doesn't usually change that often
(except in New England), but there are plenty of things that your program could be
checking that do change that quickly. And, since your program is a community, it is
always possible that some other member of the community changed something while
your back was turned.

[Footnote: But see chapter 20, Synchronization, where we discuss mechanisms to prevent
the wrong things from changing behind your back.]

Instead of two separate if statements, we have a way to say that these two actions are
actually mutually exclusive alternatives. We use a second form of the if statement, the
if/else statement, that allows us to express this kind of situation. An if/else statement
has a single boolean test condition but two statements, the consequent and the
alternative. Like the consequent, the alternative can be almost any statement but will in
this book be restricted to be a block.

Chapter 12 Dealing with Difference: Dispatch 347

[Pic of if/else execution path]

Executing an if/else statement works mostly like executing a simple if statement:
First the boolean test expression is evaluated. If its value is true, the consequent statement
is executed and the if/else statement is done. The difference occurs when the boolean
test expression's value is false. In this case, the consequent is skipped (as it would be in
the simple if) but the alternative statement is executed in its place. So in an if/else
statement, exactly one of the consequent statement or the alternative statement is always
executed. Which one depends on the value of the boolean test expression.

The following code might appear in the calculator's act method, as described above. It is
looking at which button is pressed, just like a good manager, and deciding which helper
procedure should handle it.

if (this.isDigitButton(buttonID)) {
 this.processDigitButton(buttonID);
} else {
 this.processOperatorButton(buttonID);
}

This code presumes some helper functions. The method isDigitButton verifies that the
buttonID corresponds to the keys 0 through 9. The process... methods actually implement
the appropriate responses to these button types.

Because there is only one test expression in this statement, it is always the case that at the
single time of its evaluation (per if statement execution), it will be either true or false. If
the test expression is true, the consequent statement will be executed (and the alternative
skipped). If it is false, the alternative statement will be executed (and the consequent
skipped). Exactly one of the consequent or the alternative will necessarily be executed
each time that the if statement is executed.

348 Chapter 12 Dealing with Difference: Dispatch

12.2.3 Cascaded if Statements

The if/else statement is a special case of a more general situation. Sometimes, it is
sufficient to consider one test and decide whether to perform the consequent or the
alternative. But the example we gave of determining whether the buttonID was a digit or
not probably isn't one. After all, a non−digit might be an operator, but it also might, for
example, be an = . We probably need to check more than one condition, although we
know if any one of these conditions is true, none of the others is. This is a perfect
situation for a cascaded if statement.

[Footnote: The test for isDigitButton, etc., may seem mysterious right now, and indeed
we will simply assume the existence of these boolean−returning predicates for now. An
implementation is provided in the section on Symbolic Constants, below, and discussed
further in Chapter 13, Encapsulation.]

if (this.isDigitButton(buttonID)) {
 this.processDigitButton(buttonID);
} else {
 if (this.isOperatorButton(buttonID)) {
 this.processOperatorButton(buttonID);
 } else {
 this.processEqualsButton(buttonID);
 }
}

In fact, the situation is really even more complex:

if (this.isDigitButton(buttonID)) {
 this.processDigitButton(buttonID);
} else {
 if (this.isOperatorButton(buttonID)) {
 this.processOperatorButton(buttonID);
 } else {
 if (this.isEqualsButton(buttonID)) {
 this.processEqualsButton(buttonID);
 } else {

// and so on until...
 throw new NoSuchButtonException(buttonID);
 }
 }
}

These ifs inside elses can get to be quite difficult to read, not to mention the pressure
that they put on the right margin of your code as each subsequent if is further indented.

Chapter 12 Dealing with Difference: Dispatch 349

[Footnote: The final lines of such a sequence also contain an awful lot of closing braces.]

In order to avoid making your code too complex — and too right−handed — there is an
alternate but entirely equivalent syntax, called the cascaded if statement. In this
statement, an else clause may take an if statement directly, rather than inside a block.
Further, the consequent block of this embedded if statement is lined up with the
consequent block of the original if statement. So the example above would now read:

if (this.isDigitButton(buttonID)) {
 this.processDigitButton(buttonID);
} else if (this.isOperatorButton(buttonID)) {
 this.processOperatorButton(buttonID);
} else if (this.isEqualsButton(buttonID)) {
 this.processEqualsButton(buttonID);

// and so on until...
} else {
 throw new NoSuchButtonException(buttonID);
}

Note that instead of ending with many close braces in sequence, a cascaded if statement
ends with a single else clause (generally without an if and test expression) followed
by a single closing brace.

[Pic of cascaded if execution path]

Like a simple if/else statement, exactly one block of a cascaded if statement is
executed. Once that block executes, the entire statement is finished. The difference is that
if the first expression's value is false, the next condition is evaluated, and then the next,
and so on, until either

 one test expression evaluates to true, in which case the corresponding body is
executed and execution of the statement is then terminated, or

•

 an else without an if and test is reached, in which case the corresponding
body is executed, or

•

350 Chapter 12 Dealing with Difference: Dispatch

 the end of the statement is reached, in which case its execution is complete.•

Since an else with no if and test is always executed, such an else must be the last
clause of the cascaded if.

12.2.4 Many Alternatives

A conditional is a very general statement. With it, it is possible to write extremely
convoluted programs. In order to make your program as easy to understand as possible, it
is a good idea to keep your conditionals clean. A reasonable rule of thumb is that you
should be able to explain the logic of your if statement easily to a friend. If you have to
resort to pen and paper, your conditional expression may be too complex. If you have to
write down more than two or three things, your conditional logic is most likely out of
control.

For example, you should not test too many things simultaneously in one test expression.
If you have a complex condition to test, use a boolean−returning method (a predicate) to
keep the test expression simple. By naming the predicate appropriately, you can actually
make your code much easier to read, as we did with isDigitButton and isOperatorButton,
above. We will return to this point in the section on Procedural Abstraction in Chapter
13, Encapsulation.

As we have seen, you can embed if statements. In the example that we gave above, the
embedded statements were actually mutually exclusive alternatives in the same set of
tests: the button is either a digit or an operator or the equals button or.... In this case, you
should use the cascaded if syntax with which we replaced our embedded ifs.

But sometimes it is appropriate to embed conditionals. For example, in the calculator's
act method, inside the isOperatorButton block, we might further test whether the
operation was addition or subtraction or multiplication or division.

Chapter 12 Dealing with Difference: Dispatch 351

if (this.isDigitButton(buttonID)) {
 this.processDigitButton(buttonID);
} else if (this.isOperatorButton(buttonID)) {
 if (this.isPlusButton(buttonID) {
 this.handlePlus();
 } else if (this.isMinusButton(buttonID)) {
 this.handleMinus();
 } else if (this.isTimesButton(buttonID)) {
 this.handleTimes();
 } else if (this.isDivideButton(buttonID)) {
 this.handleDivide();
 } else {
 throw new NoSuchOperatorException(buttonID);
 }
} else if (this.isEqualsButton(buttonID)) {

// etc.
}

In this case, these further tests are a part of deciding how to respond to an operator
button, including an operator−specific exception−generating clause. Note that the
additional tests appear inside an if body, not inside an unconditional else. Using an
embedded conditional to further refine a tested condition is a reasonable design strategy.

Beware: of multiply evaluating an expression whose value might change. Instead,
evaluate the expression once, assigning this value to a temporary variable whose value,
once assigned, will not change between repeated evaluations.

The example above of looking out the window to check the weather may work well in
southern California, but it is ill−advised in New England, where the weather has been
known to change at the drop of a hat. Similarly, repeated invocation of a method
returning the current time can be expected to produce different values. So can repeated
invocations of a Counting's getValue method. If we execute the following conditional:

if (theCounter.getValue() > 1) {
 Console.println(“My, there sure are a lot of them!”);
} else if (theCounter.getValue() == 1) {
 Console.println(“A partridge in a pear tree!”);
} else if (theCounter.getValue() == 0) {
 Console.println(“Not much, is it?”);
} else if (theCounter.getValue() < 0) {
 Console.println(“I'm feeling pretty negative.”);
} else {
 Console.println(“Not too likely, is it?”);
}

while theCounter is independently incremented, it is possible that the counter will be
incremented in just such a way that “Not too likely” might be printed. Question:

352 Chapter 12 Dealing with Difference: Dispatch

Describe how the process of executing this conditional (once) might be intertwined with
the (repeated) incrementing of the counter to result in any one of the five different strings
being printed, including the last possibility. (So, for example, describe how “My, there
sure are a lot of them!” might get printed, how “A partridge in a pear tree!” might get
printed, and so on.) Is it possible that nothing is printed? Is it possible that more than one
string is printed?

If/Else Statement Syntax

An if statement consists of the following parts:

 The keyword if, followed by•
 an expression of type boolean, enclosed in parentheses, followed by•
 a (block) statement.•

This may optionally be followed by an else clause. An else clause consists of the
following parts:

 The keyword else, followed by•
 a (block) statement•

or

 The keyword else, followed by•
 the keyword if, followed by•
 an expression of type boolean, enclosed in parentheses, followed by•
 a (block) statement, optionally followed by•
 another else clause.•

Execution of the if statement proceeds as follows:

First, the test expression of the if is executed. If its value is true, the (block)
statement immediately following this test is executed. When this completes,
execution continues after the end of the entire if statement, i.e., after the final
else clause body (if any).

If the value of the first if test is false, execution continues at the first else clause.
If this else clause does not have an if test, its body (block) is executed and then
the if statement terminates. If the else clause does have an if test, execution
proceeds as though this if were the first test of the statement, i.e., at the beginning
of the preceding paragraph.

Chapter 12 Dealing with Difference: Dispatch 353

12.3 Limited Options: switch

An if statement is a very general conditional. Often, the decision of what action to take
depends largely or entirely on the value of a particular expression. For example, in the
calculator, the decision as to what action to take when a user presses a button can be
made based on the particular button pressed. What we really want to do is to see which of
a set of known values (all of the calculator's buttons) matches the particular value (the
actual button pressed). This situation is sometimes called a dispatch on case.

There is a special statement designed to handle just such a circumstance. In Java, this is a
switch statement. A switch statement matches a particular expression against a list of
known values.

Before we look at the switch statement itself, we need to look briefly at the list of
known values. In a Java switch statement, these values must be constant expressions.

12.3.1 Constant Values

When we are choosing from among a fixed set of options, we can represent those options
using symbolic constants. A symbolic constant is a name associated with a fixed value.
For example, it would be lovely to write code that referred to the calculator's
PLUS_BUTTON, TIMES_BUTTON, etc. But what values would we give these names?
For that matter, what is the type of the calculator's buttonID ?

The answer is that it doesn't matter. At least, it doesn't matter as long as PLUS_BUTTON
is distinct from TIMES_BUTTON and every other buttonID on the calculator. We don't
want to add PLUS_BUTTON to TIMES_BUTTON and find out whether the value is
greater or less than EQUALS_BUTTON, or to concatenate PLUS_BUTTON and
EQUALS_BUTTON. But we do want to check whether

buttonID == PLUS_BUTTON

and the value of this expression ought to be (guaranteed to be) different from the value of

buttonID == TIMES_BUTTON

(unless the value of buttonID has changed). Contrast this with a constant such as
Math.PI, whose value is at least as important as its name.

These symbolic constants, then, must obey a simple contract. A particular symbolic
constant must have the same value at all times (so that EQUALS_BUTTON ==
EQUALS_BUTTON, always), and its value must be distinct from that of other symbolic
constants in the same group (PLUS_BUTTON != EQUALS_BUTTON). These are the
ONLY guaranteed properties, other than the declared type of these names.

354 Chapter 12 Dealing with Difference: Dispatch

12.3.1.1 Symbolic Constants

It is common, though not strictly speaking necessary, to declare symbolic constants in a
class or interface rather than on a per instance basis. It makes sense for them to appear in
an interface when they form part of the contract that two objects use to interact. For
example, you might communicate with me by passing me one of a fixed set of messages
— MESSAGE_HELLO, MESSAGE_GOODBYE, etc. — and the interface might declare
these constants as a part of defining the messages that we both are expected to understand
and use. This means that these symbolic constants are declared static.

It makes sense that a name such as this, which is part of a contract, might be declared
public. This allows it to be used by any objects that need to interact with the symbolic
constant's declaring object. Symbolic constants like this need not be public, but they often
are. (Private symbolic constants would be used only for internal purposes. Package−level
or protected symbolic constants might be used in a restricted way.)

In Java, a name is declared final to indicate that its value cannot change. This is one of
the properties that we want our symbolic constants to have: unchanging value. A value
declared final cannot be modified, so you need not worry that extra visibility will allow
another object to modify a constant inappropriately.

It is common, though somewhat arbitrary, to use ints for these constants. There are
some advantages to this practice, and it does simplify accounting. For example, by
defining a set of these constants in sequence one place in your code, it is relatively easy
to keep track of which values have been used or to add new values.

public static final int ...
 PLUS_BUTTON = 10,
 MINUS_BUTTON = 11,
 TIMES_BUTTON = 12,
 ...

Of course, you should never depend on the particular value represented by a symbolic
constant (such as EQUALS_BUTTON), since adding a new symbolic name to the list
might cause renumbering. The particular value associated with such a name is not
important.

So symbolic constants are often public static final ints.

Chapter 12 Dealing with Difference: Dispatch 355

final

In Java, a name may be declared with the modifier final. This means that the value
of that name, once assigned, cannot be changed. Such a name is, in effect, constant.

The most common use of this feature is in declaring final fields. These are object
properties that represent constant values. Often, these fields are static as well as
final, i.e., they belong to the class or interface object rather than to its instances.
Static final fields are the only fields allowed in interfaces.

In addition to final fields, Java parameters and even local variables can be declared
final. A final parameter is one whose value may not be changed during
execution of the method, though its value may vary from one invocation of the
method to the next. A final variable is one whose value is unchanged during its
scope, i.e., until the end of the enclosing block.

[Footnote: final fields and parameters are not strictly speaking necessary unless you
plan to use inner classes. They may, however allow additional efficiencies for the
compiler or clarity for the reader of your code.]

Java methods may also be declared final. In this case, the method cannot be
overridden in a subclass. Such methods can be inlined (i.e., made to execute with
especially little overhead) by a sufficiently intelligent compiler.

Java classes declared final cannot be extended (or subclassed).

12.3.1.2 Using Constants

Properties such as the button identifiers are common to all instances of Calculators. In
fact, they are reasonably understood as properties of the Calculator type rather than of
any particular Calculator instance. They can (and should) be used in interactions between
Calculator's implementors and its users. In general, symbolic names (and other constants)
can be a part of the contract between users and implementors.

This means that it is often useful to declare these static final fields in an interface, i.e., in
the specification of the type and its interactions. In fact, static final fields are allowed in
interfaces for precisely this reason. Thus, the definition of interfaces in Chapter 4,
Specifying Behavior: Interfaces, is incomplete: interfaces can contain (only) abstract
methods and static final data members.

For example, the Calculator's interface might declare the button identifiers described
above:

356 Chapter 12 Dealing with Difference: Dispatch

public interface Calculator {
 public static final int PLUS_BUTTON = 10,
 MINUS_BUTTON = 11,
 TIMES_BUTTON = 12,
 ...
 EQUALS_BUTTON = 27;
}

Now any user of the Calculator interface can rely on these symbolic constants as a part of
the Calculator contract. For example, the isOperatorButton predicate might be
implemented as

public boolean isOperatorButton(int buttonID) {
 return (buttonID == Calculator.PLUS_BUTTON)
 || (buttonID == Calculator.MINUS_BUTTON)
 || (buttonID == Calculator.TIMES_BUTTON)
 || (buttonID == Calculator.DIVIDE_BUTTON);
}

[Footnote: Note the absence of any explicit conditional statement here. Using an if to
decide which boolean to return would be redundant when we already have boolean values
provided by == and by ||. See the Style Sidebar on Using Booleans in Chapter 6,
Statements and Rules.]

If we choose our numbering scheme carefully, the predicate isDigitButton could be
implemented as

public boolean isDigitButton(int buttonID) {
 return (0 <= buttonID) && (buttonID < 10);
}

Of course, this is taking advantage of the idea that the digit buttons would be represented
by the corresponding ints. This is a legitimate thing to do, but ought to be carefully
documented, both in the method's documentation and in the declaration of the symbolic
constants:

Chapter 12 Dealing with Difference: Dispatch 357

/**
 * Symbolic constants representing calculator button IDs.
 * The values 0..9 are reserved for the digit buttons,
 * which do not have symbolic name equivalents.
 */
public static final int PLUS_BUTTON = 10,
 MINUS_BUTTON = 11,
 TIMES_BUTTON = 12,
 ...
 EQUALS_BUTTON = 27;

and

/**
 * Assumes that the digit buttons 0..9 will be represented by
 * the corresponding ints. These values should not be used for
 * other buttonID constants.
 */
public boolean isDigitButton(int buttonID) {
 return (0 <= buttonID) && (buttonID < 10);
}

358 Chapter 12 Dealing with Difference: Dispatch

Style Sidebar

Use Named Constants

A constant is a name associated with a fixed value. Constants come in two flavors:
constants that are used for their value, and symbolic constants, used solely for
their names and uniqueness. Calculator.PLUS_BUTTON (whose value is
meaningless) is a symbolic constant, while Math.PI (whose value is essential to its
utility) is not. But constants — named values — are a good idea whether the value
matters or not.

Introducing a numeric literal into your code is generally a bad idea. One exception
is 0, which is often used to test for the absence of something or to start off a
counting loop. Another exception is 1 when it is used to increment a counter. But
almost all other numeric literals are hard to understand. In these cases, it is good
style to introduce a name that explains what purpose the number serves.

Numbers that appear from nowhere, with no explanation and without an associated
name, are sometimes called magic numbers (because they appear by magic). Like
magic, it is difficult to know what kind of stability magic numbers afford. It is
certainly harder to read and understand code that uses magic numbers.

In contrast, when you use a static final name, you give the reader of your code
insight into what the value means. Contrast, for example, EQUALS_BUTTON
versus 27. You also decouple the actual value from its intended purpose. Code
containing the name EQUALS_BUTTON would still work if EQUALS_BUTTON
were initially assigned 28 instead of 27; it relies only on the facts that its value is
unchanging and it is distinct from any other buttonID.

12.3.2 Syntax

We turn now to a switch statement. A switch statement begins by evaluating the
expression whose value is to be compared against the fixed set of possibilities. This
expression is evaluated exactly once, at the beginning of the execution of the switch
statement. Then, each possibility is compared until a match is found. If a match is found,
“body” statements are executed. A switch statement may also contain a default case
that always matches. In these ways, a switch statement is similar to, but not the same
as, a traditional conditional.

12.3.2.1 Basic Form

A simple switch statement looks like this:

Chapter 12 Dealing with Difference: Dispatch 359

switch (integralExpression) {
 case integralConstant:

actionStatement;
 break;
 case anotherIntegralConstant:

anotherActionStatement;
 break;
}

To execute it, first the integralExpression is evaluated. Then, it is compared to the first
integralConstant. If it matches, the first actionStatement is executed. If
integralExpression doesn't match the first integralConstant, it is compared to
anotherIntegralConstant instead. The result is to execute the first actionStatement whose
integralConstant matches, then jumps to the end of the switch statement.

For example, we might implement the calculator's act method like this:

switch (buttonID) {
 case Calculator.PLUS_BUTTON:
 this.handlePlus();
 break;

// ...
 case Calculator.EQUALS_BUTTON:
 this.handleEquals();
 break;
}

The presence of the break statements as the last statement of each set of actions is
extremely important. They are not required in a switch statement, but without them the
behavior of the switch statement is quite different. See the Switch Statement Sidebar
for details.

360 Chapter 12 Dealing with Difference: Dispatch

Break and Continue Statements

The break statement used here is actually more general that just its role in a
switch statement.

A break statement is a general purpose statement that exits the innermost enclosing
switch, while, do, or for block.

A variant form, the labeled break statement, exits all enclosing blocks until a
matching label is found. A labeled break does not exit a method, however. The
labeled form of the break statement looks like this:

label:
blockStatementText {

bodyText
break label;
moreBodyText

 } endBlockStatementText

One or both ofblockStatementText or endBlockStatementText may
be present; for example, this block may be a while loop, in which case
blockStatementText would be the code fragment while (expr) and
there would be noendBlockStatementText.

[Footnote: The labeled block may be any statement containing a block, including a
simple sequence statement. The body text may contain any statements, including —
in the case of a labeled break — other blocks, so that a labeled break may exit
multiple embedded blocks.]

This code is equivalent to:

try {
blockStatementText {

bodyText
 throw new LabelBreakException();

moreBodyText>
 } endBlockStatementText
} catch (LabelBreakException e) {
}

[Footnote: Here,LabelBreakException is a unique exception type referring to
this particular labeled break statement.]

Chapter 12 Dealing with Difference: Dispatch 361

That is, the labeled break statement causes execution to continue immediately
after the end of the corresponding labeled block.

[Insert break pic, continue pic]

A similar statement, continue, also exists in unlabeled and labeled forms.

An unlabeled continue statement terminates the particular body execution of the (
while, do, or for) loop it is executing and returns to the (increment and) test
expression.

The labeled continue statement works similarly, except that it continues at the test
expression of an enclosing labeled while, do, or for loop. The labeled
continue statement:

label:
blockStatementText {

bodyText
continue label;
moreBodyText

 } endBlockStatementText

is equivalent to

blockStatementText {
 try {

bodyText
 throw new LabelContinueException();

moreBodyText>
 } catch (LabelContinueException e) {
 }
} endBlockStatementText

362 Chapter 12 Dealing with Difference: Dispatch

12.3.2.2 The Default Case

In an if statement, if none of the test expressions evaluates to true, a final else clause
without an if and test expression may be used as the default behavior of the statement.
Such an else clause is always executed whenever it is reached.

In a switch statement, a similar effect can be achieved with a special case (without a
comparison value) labeled default:

switch (buttonID) {
 case Calculator.PLUS_BUTTON:
 this.handlePlus();
 break;

// ...
 case Calculator.EQUALS_BUTTON :
 this.handleEquals();
 break;
 default:
 throw new NoSuchButtonException(buttonID);
}

If no preceding case matches the value of the test expression, the default will always
match. It is therefore usual to make the default the final case test of the switch
statement. (No case after the default will be tested.) When the default clause is the
last statement of your switch, it is not strictly speaking necessary to end it with a
break statement, though it is not a bad idea to leave it in anyway. The final break
statement is omitted in this example because it would never be reached after the throw.
(Any instruction follower executing the throw would exit the switch statement at that
point.)

It is often a good idea to include a default case, even if you believe that it is unreachable.
You would be amazed at how often “impossible” circumstances arise in programs,
usually because an implicit assumption is poorly documented or because a modification
made to one part of the code has an unexpected effect on another.

Chapter 12 Dealing with Difference: Dispatch 363

[Insert switch/default pic]

12.3.2.3 Variations

It is possible to write a switch statement without using breaks. In this case, when a
case matches, not only its following statements but all statements within the switch and
up to a break or the end of the switch statement will be executed. This can be useful
when the action for one case is a subset of the action for a second case. Beware: of
accidentally omitted break statements in a switch . Because omitting the break is
sometimes what you want, it is legal Java and the compiler will not complain. Omitting a
break statement will cause the statements of the following case(s) to be executed as
well.

If two (or more) cases have the same behavior, you can write their cases consecutively
and the same statements will be executed for both. This is, in effect, giving the first case
no statements (and no break) and letting execution “drop through” to the statements for
the second case. For example:

switch (buttonID) {
 case Calculator.PLUS_BUTTON:
 case Calculator.MINUS_BUTTON:
 case Calculator.TIMES_BUTTON:
 case Calculator.DIVIDED_BY_BUTTON:
 this.handleOperator(buttonID);
 break;

//
}

In this switch statement, the same action would be taken for each of the four operator
types. The buttonID pressed is passed along to the operator handler to allow it to figure
out which operator is needed.

364 Chapter 12 Dealing with Difference: Dispatch

12.3.2.4 Switch Statement Pros and Cons

A switch statement is very useful when dispatch is based on the value of an expression
and the value is drawn from a known set of choices. The switch expression must be of
an integral type and the comparison case values must be constants (i.e., literals or final
names) rather than other variable names. When a switch statement is used, the
switch expression is evaluated only once.

A switch statement cannot be used when the dispatch expression is of an object type or
when it is a floating point number. It also cannot be used with a boolean, but since the
boolean expression has only two possible values, an if statement with a single
alternative makes at least as much sense in that case.

The requirement that a switch expression must be of integral type is one reason why
static final ints are often used as symbolic constants. int is a convenient
integral type and symbolic constants are naturally compatible with switch statements.

A switch statement cannot be used when the comparison values are variable or drawn
from a non−fixed set. That is, if the dispatch expression must be compared against other
things whose values may change, the switch statement is not appropriate. For example,
you wouldn't want to use a switch statement to compare a number against the current
ages of the employees of your company, because these are changing values.

The switch statement is also not appropriate for expressions that may take on any of a
large range of values. (“Large” is subjective, but if you wouldn't want to write out all of
the cases, that's a good indication that you don't want a switch statement.) For example,
you wouldn't want to do a dispatch on a the title of a returned library book, testing it
against every book name in the card catalog, even if you represented names as symbolic
constants rather than as Strings.

[Footnote: Of course, if you represented the names as Strings, you couldn't use a
switch statement because String is an object type.]

Chapter 12 Dealing with Difference: Dispatch 365

Switch Statement Syntax

A switch statement contains a test expression and at least one case clause. After
that, the switch statement may contain any number of case clauses or statements
in any order:

switch (integralExpression) {
caseClause
caseClauses or statements

}

The integralExpression is any expression whose type is an integral type: byte,
short, int, long, or char.

A caseClause may be either

case constantExpression:

or

default:

If the caseClause contains a constantExpression, this must be an
expression of an integral type whose value is known at compile time. Such an
expression is typically either a literal or a name declared final, although it may
also be an expression combining other constant expressions (e.g., the product of a
literal and a name declared final).

Note that eachcaseClause must end with a colon.

Typically, the actual syntax of a switch statement is:

366 Chapter 12 Dealing with Difference: Dispatch

switch (integralExpression) {
 case constantExpression:
 case constantExpression:
 ...
 case constantExpression:

statements
 break;

 ...

 default:
statements

 break; // optional
}

12.4 Arrays

Sometimes, what we really want to do when dispatching is to translate from one
representation to another. For example, in constructing a Calculator, we might want to
move from the symbolic constants used to identify buttons above to the actual labels
appearing on those buttons. We might even want to move between the labels on buttons
and the buttons themselves. If our collection of objects is indexed using an integral type
— either because it is naturally indexed or because we have used ints as symbolic
constants — we can often accomplish this conveniently using arrays.

[Mailbox pic]

12.4.1 What is an Array?

An array is an integrally indexed grouping of dials or labels. You can think of it sort of
like a wall full of numbered mailboxes. In identifying a mailbox, you need to use both a
name corresponding to the whole group (“the mailboxes in the lobby”) and an index
specifying which one (“mailbox 37”). Similarly, an array itself is a thing that can be

Chapter 12 Dealing with Difference: Dispatch 367

named — like the group of mailboxes — and it has members — individual mailboxes —
named using both the array name and the index, in combination. For example, my own
particular individual mailbox might be named by lobbyMailboxes[37].

An array has an associated type that specifies what kind of thing the individual names
within the array can be used to refer to. This type is sometimes called the base type of the
array. For example, you can have an array of chars or an array of Strings or an array of
Buttons. The individual names within the array are all of the same type, say char or
String or Button.

That is, an array is a collection of nearly−identical names, distinguished only by an int
index. An array of dial−type—for example, an array of chars—really is almost like a set
of mailboxes, each of which is an individual dial−name. To identify a particular dial, you
give its mailbox number. For example, you can look and see what (char) is in mailbox
32 or put an appropriately typed thing (char) in mailbox 17. Label−type arrays work
similarly, though it's hard to find an analogously appropriate analogy. (A set of dog−tags
or post−it notes is along the right lines, but it is harder to visualize these as neatly lined
up and numbered.) A label−type array — such as an array of Buttons − is an indexed
collection of labels suitable for affixing on things of the appropriate type — such as
Buttons. The names affixed on individual Buttons are names like myButtons[8];, the ninth
button in my array.

[Footnote: Yes, that's right, myButtons[8], the ninth button. Array elements, like the
characters in Strings, are numbered starting from 0.]

[Label array pic]

12.4.1.1 Array Declaration

An array type is written just like the type it is intended to hold, followed by square
braces. For example, the type of an array of chars is char[] and the type of an array of
Buttons is Button[]. Note that, like char and Button, char[] and Button[] denote
types, not actual Things. So, for example,

char[] initials;

368 Chapter 12 Dealing with Difference: Dispatch

makes the name initials suitable for sticking on things of type char[]; it doesn't create
anything of type char[] or otherwise affix initials to some Thing. Similarly,

Button[] pushButtons;

creates a label, pushButtons , suitable for attaching to a Button[], and nothing more.
Note that both initials and pushButtons are label names, not dial names. The names of
array types are always label types, although a particular array may itself be suitable either
for holding dial (e.g., char) or label (e.g. Button) types.

[Array declaration and construction pic]

12.4.1.2 Array Construction

To actually create a char[] or Button[],

[Footnote: Pronounced “Button array” or “array of Buttons”.]

you need an array construction expression. This looks a bit like a class instantiation
expression, but it is actually not quite the same. An array construction expression
consists of the keyword new followed by the array type with an array size inside the
square braces. For example,

new char[26]

is an expression that creates 26 char−sized mailboxes, numbered 0 through 25.
Similarly,

new Button[518]

is an expression whose value is a brand new array of 518 Button−sized labels. Note that
arrays are indexed starting at 0, so the last index of a member of this array will be 517,
one less than the number supplied to the array construction expression.

The expression

Chapter 12 Dealing with Difference: Dispatch 369

pushButtons = new Button[numButtons]

makes the name pushButtons refer to a new array of Button−sized labels. How many?
That depends on the value of numButtons at the time that this statement is executed.

The statement

String[] buttonLabels = new String[16];

combines all of these forms, creating a name (buttonLabels) suitable for labeling an
array of Strings (String[]), constructing a 16−String array, and then attaching the
name buttonLabels to that array. Note that the text String[] appears twice in this
definition, once as the type and once (with an integral argument between the brackets) in
the array construction expression. 12.4.1.3 Array Elements

To access a particular member of the array, you need an expression that refers to the
array (such as its name), followed by the index of the particular member inside square
braces. For example,

buttonLabels[2]

is an expression of type String that refers to the element at index 2 of the String array
named by buttonLabels. Recall that, since the indices of buttonLabels run from 0 to 15,
buttonLabels[2] is the third element of the array.

This expression behaves very much as though it were a name expression. Like a name, an
array element expression of label type may be stuck on something, or may be null. An
array element of dial type (e.g., initials[6]) behaves like a dial name.

You can use these array member expressions in any place you could use a name of the
same type. So, for example, you can say any of the following things:

buttonLabels[2] = “Hi there”;
String firstString = buttonLabels[0];
buttonLabels[7] = buttonLabels[6] + buttonLabels[5];
Console.println(buttonLabels[Calculator.PLUS_BUTTON]);
if (buttonLabels[currentIndex] == null) ...

(assuming of course that Calculator.PLUS_BUTTON and currentIndex are
both integral−type names).

370 Chapter 12 Dealing with Difference: Dispatch

Array Syntax

Array Type

An array is a label name whose type is any Java type followed by []. The array is an
array of that type. Admissible types include dial (primitive) types, label (object)
types, and other array types. An array is declared like any other Java name, but
using an array type. For example, if baseType is any Java type, then the following
declaration creates a label, arrayName, suitable for affixing on an array of
baseType:

baseType[] arrayName;

Array Initialization

By default, an array name's value is null. An array name may be defined at
declaration time using an array literal. This consists of a sequence of
comma−separated constant expressions enclosed in braces:

baseType[] arrayName = { const0, const1, ... constN };

Array Construction

Unless an array initialization expression is used in the declaration, an array must be
constructed explicitly using the array construction expression

new baseType[size]

Here,baseType is the base type of the array (i.e., this expression constructs an
array of baseType) and size is any non−negative integral expression.

Array Access

The expressionarrayName[index] behaves as a “regular” Java name. Its type
is the array's base type. The expression inside the square brackets is called the index
of the array access expression. The first index of an array is 0. The length of an
array arrayName is given by the expression arrayName.length. Thus, arrays
are numbered from 0 to arrayName.length − 1. Attempting to access an
array with an index outside this range throws an ArrayOutOfBoundsException.

12.4.2 Manipulating Arrays

The particular names associated with individual members of an array behave like

Chapter 12 Dealing with Difference: Dispatch 371

ordinary (dial or label) names. What is unusual about them is how you write the name —
arrayName[index] — rather than how they actually behave.

You can find out how many elements are in a particular array with the expression
arrayName.length. Note that there are no parentheses after the word length in this
expression. Technically, this is not either a field access or a method invocation
expression, although it looks like one and behaves like the other.

Note also that the value of the expression arrayName.length is not the index of the
last element of the array. It is in fact one more than the final index of the array, because
the array's indices start at 0. Attempting to access an array element with a name smaller
than 0 or greater than or equal to its length is an error. In this case, Java will throw an
ArrayOutOfBoundsException.

[Picture of changing array references]

Once you construct an array, the number of elements in that array does not change.
However, this immutable value is the number of elements in the array itself, not the
number of elements associated with the array's name. If the name is used to refer to a
different array later, it may have a different set of legal indices. For example:

char[] firstInitials = new char[10];
// firstInitials[3] would be legal,

 // but firstInitials[12] would not.

firstInitials[5] = 'f';
firstInitials[5] = 'g';

// changes the value associated with a particular mailbox

firstInitials = new char[2];
// changes the whole set of mailboxes

 // now firstInitials[3] isn't legal either!

372 Chapter 12 Dealing with Difference: Dispatch

12.4.2.1 Stepping Through an Array Using a for Statement

One common use of arrays is as a way to step through a collection of objects. If you are
going to work your way through the collection, one by one, it is common to do so using a
counter and a loop.

We can write this with a while loop:

int index = 0;

while (index < arrayName.length) {
// do something

 index++;
}

Note that index can't be initialized inside the while statement or it wouldn't be bound in
the test expression. Local (variable) names have scope only from their declarations until
the end of their enclosing blocks.

This is so common, there's a special statement for it. The while statement above can be
replaced by:

for (int index = 0; index < arrayName.length; index++) {
// do something

}

Note that the for loop also includes the declaration of index, but that index only has
scope inside the for loop. It is as though index's definition plus the while loop were
enclosed in a block.

For additional detail on for statements, refer to the sidebar.

Chapter 12 Dealing with Difference: Dispatch 373

For Statement Syntax

The syntax

for (initStatement; testExpression; incrementStatement) {
body

}

is the same as

{
initStatement;

 while (testExpression) {
body
incrementStatement;

 }
}

The expression testExpression is any single boolean expression. It falls within the
scope of any declarations made in initStatement.

Both initStatement and incrementStatement are actually allowed to be multiple
statements separated by commas, e.g.:

i = i + 1, j = j + i

Note that initStatement, testExpression, and incrementStatement are separated by
semicolons, but that individual statements within initStatement and
incrementStatement are separated by commas. There is no semicolon at the end of
incrementStatement.

12.4.3 Using Arrays for Dispatch

In addition to their use as collection objects, arrays can be used as a mechanism for
dispatch. This is because the value that you have been asked to respond to — the value
upon which you are dispatching — can, under some circumstances, be stored in an
integral−type variable and used as an index into an array. As the value of that variable
changes, and hence as the index of the array access changes, you get different behavior.

374 Chapter 12 Dealing with Difference: Dispatch

The rest of this subsection gives an example of using an array for dispatch. In this
example, we are not going to use an array to do the calculator's central dispatch job.
Instead, we will consider the problem of constructing actual GUI Button objects that will
appear on the screen.

There should be one Button corresponding to each of the symbolic constants described
above. Each of these Buttons will need an appropriate label, to be passed into the Button
constructor. We might create a method,

String getLabel(int buttonID)

for this purpose.

We could use our getLabel to say

new Button(this.getLabel(buttonID))

or even

gui.add(new Button(this.getLabel(buttonID)))

Such a getLabel method, which could translate from buttonID's to labels, would also be
useful for generating Strings suitable for printing to the Console, e.g., for debugging
purposes.

One way to implement this method would be with an if statement. In this case, the body
of the method might say:

if (buttonID == Calculator.PLUS_BUTTON) {
 return “+”;
} else if (buttonID == Calculator.MINUS_BUTTON) {
 return “−”;
} else if (buttonID == Calculator.TIMES_BUTTON) {

// and so on....
}

Of course, this would get rather verbose rather quickly.

Because we are really doing a dispatch on the value of buttonID, and because we've
cleverly chosen to implement these symbolic constants as ints, we could opt instead to
use a switch statement:

Chapter 12 Dealing with Difference: Dispatch 375

switch (buttonID) {
 case Calculator.PLUS_BUTTON:
 return “+”;
 case Calculator.MINUS_BUTTON:
 return “−”;

// and so on....
}

This may be somewhat shorter, but not much. It does have the advantage of making the
dispatch on buttonID more explicit. But we can do still better. Question: In the
immediately preceding switch statement, why are there no break statements?

If we create an array containing the button labels, in order, corresponding to the buttonID
symbolic constants, then we can use the buttonID to select the label:

String[] buttonLabels = { “0”, “1”, “2”, “3”, “4”,
 “5”, “6”, “7”, “8”, “9”,
 “+”, “−”, “*”, “/”,

// and so on ... up to
 “=”
};

In this case, the entire body of our getLabel method might say simply

return this.buttonLabels[buttonID];

This example is relatively simple, but in general arrays can be used whenever there is an
association from an index set (such as the buttonIDs) to other values. The idea is that the
index pulls out the correct information for that particular value. This is a very simple
form of a very powerful idea, which we shall revisit when we discuss object dispatch in
Chapter 14, Intelligent Objects and Implicit Dispatch.

12.5 When to Use Which Construct

Arrays are in many ways the most limited of the dispatch mechanisms. They work well
when the action is uniform up to some integrally indexed decisions, e.g., some integrally
indexed variables need to be supplied. Setting up the array appropriately allows for very
concise code. This is not always possible, though, either because there isn't an obvious
index set, because the index set is not integral, because it is not possible to set up the
necessary association, or because the needed responses are nonuniform.

376 Chapter 12 Dealing with Difference: Dispatch

Switch statements also rely on integrally indexed decisions on a single expression, but
they are otherwise quite general in the action(s) that can take place. They are useful any
time the decision is made by testing the expression against a pre−known fixed set of
constants. In other words, a switch statement can be used whenever an array is
appropriate, though it may be more verbose. A switch statement can also be used in
cases of nonuniform response, where an array would not be appropriate.

Ifs are very general. You can do anything with them. You should use them when none
of the other mechanisms are appropriate.

In a subsequent chapter, we will see an additional dispatch mechanism, object dispatch,
that resembles the implicit nature of array−based dispatch, but without many of its
restrictions.

Chapter 12 Dealing with Difference: Dispatch 377

Chapter Summary

 Dispatch is the process of deciding what action needs to be taken based on one's
input. It is essentially a middle management function.

•

 Conditional statements are used when a piece of code should be executed under
some but not all circumstances.

 An if statement may consist only of a single boolean test expression and a
body. This body is executed only if the test expression's value is true.

♦

 An if statement may optionally have an else clause with a body that is
executed only when the if's test expression has the value false.

♦

 The else clause of an if statement may itself be an if statement. In
this case, it is preferable to use cascaded rather than embeddedifs.

♦

 Each test expression is evaluated independently as it is reached.♦

•

 Numbers generally should not appear in code. Instead, use symbolic constants
with descriptive names.

•

 A switch statement is used when different actions must be taken depending on
the value of a single expression.

 This expression is evaluated only once. Its type must be integral.♦

 In a switch expression, the value is compared against different cases,
which must be constants. Once a case matches, the statements of the
switch body are executed until either a break or the end of the
switch body is reached.

♦

 Switch has a specialized case, default, which always matches.♦

•

 An array is a uniformly typed collection of names.

 The type of the array member names is the array's base type. The array
member names may be either dial names or label names, depending on the
base type.

♦

 The type of the array is “array of base type.” The array name is a label
name.

♦

•

378 Chapter 12 Dealing with Difference: Dispatch

 The names of array members are written using the array name followed
by an integral index enclosed in square brackets.

♦

 The indices of an array run from 0 to arrayName.length − 1.♦

 Like an object, an array must be explicitly created using new.♦

Chapter 12 Dealing with Difference: Dispatch 379

Exercises

 Answer the Question that appears at the end of Section 12.2.4, Many
Alternatives.

1.

 Convert the following to a for loop:

int sum = 0;
int i = 1;
while (i < this.MAXIMUM) {
 sum = sum + i;
 i = i + 2;
}

2.

 Write a method that takes an array of ints and returns the sum of these ints.3.

380 Chapter 12 Dealing with Difference: Dispatch

 Consider a certain class, say, the Foo class.

 Write the statement(s) that would declare a field named transformers
suitable for an array of StringTransformers.

a.

 Write the statement(s) that would define transformers to be an array of 40
StringTransformers.

b.

 Write the statement(s) that would set each element of transformers to be a
Capitalizer. Write your statement(s) in such a way that you do NOT need
to assume that there are 40 elements in the array.

c.

 Assume that transformers has been filled with StringTransformers of
various kinds. (So, contrary to the previous parts of this question, the
StringTransformers in the array need NOT all be Capitalizers, and there
need NOT be 40 of them.) Write a method produceAllTransformations,
that takes in a String and returns an array of Strings, where:

 The first element of the returned array corresponds to the
transformation of the argument String by the first transformer in
the transformers array.

◊

 The second element of the returned array corresponds to the
transformation of the argument String by the second transformer in
the transformers array.

◊

 And so on.◊

Recall that a StringTransformer implements an interface which requires
that it has a transform method that takes a String and returns a
(transformed) String.

d.

4.

Chapter 12 Dealing with Difference: Dispatch 381

 Consider the following code, excerpted from the definition of class
EmotionalSpeaker.

public String transformEmotionally(Type emotion, String what) {
 switch (emotion) {
 case EmotionalSpeaker.HAPPY: return sayHappily(what);
 case EmotionalSpeaker.SAD: return saySadly(what);
 case EmotionalSpeaker.ANGRY: return sayAngrily(what);
 }
}

where, e.g.,

private String sayHappily(String what) {
 return “I'm so happy that ”;
}

(You may assume similar definitions for the other emotions, with appropriate
modifications.)

Define the symbolic constants HAPPY, SAD, and ANGRY, and provide a type for
emotion.

5.

 In the previous exercise, the switch statement contains no breaks. What gets
printed when we invoke:

transformEmotionally(EmotionalSpeaker.SAD, “I am here.”)

6.

 Continuing the previous two exercises: Using an array, modify the body of
transformEmotionally so that it is a single, short statement that easily fits on a
single line. Assume that the array was elsewhere defined appropriately.

7.

382 Chapter 12 Dealing with Difference: Dispatch

Chapter 13

 Encapsulation

Chapter Overview

 How do I package up implementation details so that a user doesn't have to worry
about them?

•

 How do I make my code easier to read, understand, modify, and maintain?•

Good design separates use from implementation. Java provides many mechanisms for
accomplishing this. In this chapter, we review a variety of mechanisms that allow this
sort of separation.

Procedural abstraction is the idea that each method should have a coherent conceptual
description that separates its implementation from its users. You can encapsulate
behavior in methods that are internal to an object or methods that are widely usable.
Methods should not be too complex or too long. Procedural abstraction makes your code
easier to read, understand, modify, and reuse.

Packages allow a large program to be subdivided into groups of related classes and
instances. Packages separate the names of classes, so that more than one class in a
program may have a given name as long as they occur in different packages. In addition
to their role in naming, packages have a role as visibility protectors. Packages provide
visibility levels intermediate between public and private. Packages can also be combined
with inheritance or with interfaces to provide additional encapsulation and separation of
use from implementation.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

Inner classes are a mechanism that allows one class to be encapsulated inside another.
Perversely, you can also use an inner class to protect its containing class or instance.
Inner classes have privileged access to the state of their containers, so an inner class can
provide access without exposing the object as a whole.

Objectives of this Chapter

 To understand how information−hiding benefits both implementor and user.1.

 To learn how to use procedural abstraction to break your methods into
manageable pieces.

2.

 To be able to hide information from other classes using visibility modifiers,
packages, and types.

3.

 To recognize inner classes.4.

13.1 Design, Abstraction, and Encapsulation

This chapter is about how information can be hidden inside an entity. There are many
different ways that this can be done. Each of these is about keeping some details hidden,
so that a user can rely on a commitment, or contract, without having to know how that
contract is implemented. There are numerous benefits from such information hiding.

First, it makes it possible to use something without having to know in detail how it
works. We do this all the time with everyday objects. Imagine if you had to understand
how a transistor works to use your computer, or how a spark plug works to use your car,
or how atoms work to use a lever.

Second, information−hiding gives some flexibility to the implementor. If the user is not
relying on the details of your implementation, you can modify your implementation
without disturbing the user. For example, you can upgrade your implementation if you
find a better way to accomplish your task. You can also substitute in different
implementations on different occasions, as they may become appropriate.

Finally, hiding information is liberating for the user, who does not expect nor make great
commitment to particulars of the implementation. The name for this idea — of using
more general properties to stand in for detailed implementation — is abstraction. To
facilitate abstraction, it is often convenient to package up the implementation details into
a single unit. This packaging−up is called encapsulation.

384 Chapter 13 Encapsulation

13.2 Procedural Abstraction

Procedural abstraction is a particular mechanism for separating use from implementation.
It is tied to the idea that each particular method performs a well−specified function. In
some cases, a method may calculate the answer to a particular question. In others, it may
ensure the maintenance of a certain condition or perform a certain service. In all cases,
each method should be accompanied by a succinct and intuitive description of what it
does.

[Footnote: It is not, however, essential that a method have a succinct description of how it
does what it does. How it accomplishes its task is an implementation detail.]

A method whose function is not succinctly describable is probably not a good method.
Conversely, almost every succinctly describable function should be a separate method,
albeit perhaps a private or final one.

This idea, that each conceptual unit of behavior should be wrapped up in a procedure, is
called procedural abstraction. In thinking about how to design your object behaviors,
you should consider which chunks of behavior — whether externally visible or for
internal use only — make sense as separate pieces of behavior. You may choose to
encapsulate a piece of behavior for any or all of the following reasons:

 It's a big, ugly function and you want to hide the “how it works” details from
code that might use it. Giving it a name allows the user to ignore how it's done.

•

 It's a common thing to do, and you don't want to have to replicate the code in
several places. Giving it a name allows multiple users to rely on the same
(common) implementation.

•

 It's conceptually a separate “task”, and you want to be able to give it a name.•

Note also that the behavior of a method may vary slightly from invocation to invocation,
since the parameters can influence what you the code actually does.

13.2.1 The Description Rule of Thumb

Each method in your program should have a well−defined purpose, and each
well−defined purpose in your program should have its own method. You should be able
to succinctly state what each method in your program does. If you cannot, your methods
are either too large (i.e., should be broken into separable conceptual units) or too small
(i.e., should be combined so that each performs a “complete” task.

Note that having a succinct description of what a method does is quite different from
being to state succinctly how it accomplishes this. It is unfortunately all too common that
a method's implementation is obscure. It is important that the user understand when, why,

Chapter 13 Encapsulation 385

and under what circumstances your method should be used, i.e., what it does. You
provide a method precisely so that the user will not have to understand how your method
works.

For example, it is common to test complex conditions using a single predicate. One such
instance might be the Calculator's isDigitButton() method, which determines
whether a particular Calculator button represents the digits 0 through 9 (or instead is, e.g.,
an arithmetic operator). The logic behind isDigitButton() might be somewhat
obscure. However, it is easy to succinctly state what the method determines and,
therefore, when and why you might use it. This use of predicates as abstractions make
code for easier to read, decompose, and understand.

The importance of succinct summarizability does not mean that there is exactly one
method per description. For example, one succinctly summarizable method may in turn
rely on many other succinctly summarizable methods. This is the “packaging up
substeps” idea from Chapter 1: making a sandwich may be described in terms of
spreading the peanut butter, spreading the jelly, closing and cutting the sandwich. Each
substep may itself be a method. When the substeps are not likely to be useful for anything
except the larger method of which they are a part, these methods should be private to
their defining class.

It may also be the case that multiple methods each implement the same well−defined
purpose. For example, multiple similar methods may operate on different kinds of
arguments. A method that draws a rectangle may be able to take a java.awt.Rectangle,
two java.awt.Points, or four ints as arguments. Each of these methods will have a
different signature. They may, however, rely on a common (shared) method to actually
perform much of the work, sharing as much code as possible. (See the repetition rule of
thumb, below.)

Or it may be the case that multiple distinct object types each have similar methods
performing similarly summarized functions. In this case, it may make sense to have a
common interface implemented by each of these classes, documenting their common
purpose. Occasionally it even makes sense to split off the method into its own class,
turning instances of the new class into components of the old. (See the discussion of
using contained objects in the chapter on Object Oriented Design.)

When a single method does too many things, it can be difficult to decide whether you
want to invoke it. It can be awkward to figure out what it is really doing. And the
interdependencies among subtasks can make your code hard to maintain, especially if the
assumptions that caused you to bundle these pieces together no longer hold.

Succinct summarizability makes your code immensely easier to read. By choosing
descriptive names, you can often make your code read like the English description of
what it does. This makes it easier to read, understand, modify, and maintain your code.

386 Chapter 13 Encapsulation

13.2.2 The Length Rule of Thumb

A single method should ideally fit on a single page (or screen). Often a method will only
be a few lines long. If you find yourself writing longer methods, you should work on
figuring out how to break them up into separable substeps. The description rule of thumb
is handy here.

When a method's implementation takes up too much space, it is difficult to read,
understand, or modify. It can be hard to hold the whole method in your head. It can be
overwhelming to try to figure out what it is actually doing.

Appropriate method length is a matter of some individual judgment. Some people don't
like to write methods longer than a half−page. Others regularly write much longer
methods. As you become a more skilled programmer, you will become accustomed to
keeping track of larger and more complex programs. But more complex programs do not
mean longer methods. It will always be the case that brevity of individual units — such
as methods — makes the overall flow easier to understand. Mnemonic names (describing
what the method accomplishes) and programs that read like English descriptions of their
behavior (through the use of well−chosen names) make your code more comprehensible
to subsequent readers.

How do you know when to break code into pieces? If you discover that you have written
a method that does not fit on a single page, you should write an outline for how the code
works. Each of the major steps of this outline should be turned into a method. The
original code should be rewritten in terms of these methods. The major steps should now
be shorter methods. If these are still too long, repeat this process until each piece of code
has a succinct description and occupies no more than two pages of code.

Note: Do not worry about inefficiency created by having too many small methods. First,
intelligible code is so much easier to read and maintain, and code carefully optimized for
efficiency so much more difficult to work with, that it rarely pays to do this sort of
optimization until you are a skilled programmer. Further, a good compiler should be able
to optimize. For example, if you make a method private or final, the compiler can in−line
it.

13.2.3 The Repetition Rule of Thumb

Any time that the same code appears in two different places, you should consider
capturing this common patterns of usage in a single method. When this happens, it is
often because there is an idea expressed by this code. It is useful to give this idea a name,
and to encapsulate or abstract it for reuse. Even if there are minor differences in the code
as it appears, you may be able to abstract to a common method by supplying the
distinguished information as arguments to the method. Each of the original pieces of code
should be rewritten to use the common method.

Chapter 13 Encapsulation 387

Methods created by abstracting two or more pieces of code within the same class are
often declared private. This is appropriate whenever the common behavior is local to the
particular object and not something you want to make generally available. At other times,
though, the common code is a useful and nameable function on its own. Though you may
discover the commonality by replicating code, the existence of a separate method to
replace this redundancy can be turned into an opportunity to export this functionality if it
should make sense to do so.

Combining redundant code is also important in the case of constructors. Constructors can
share code by having one invoke another — using the special this() construct — or by
using a call to one or more (private) helper methods. A common programming mistake is
to modify only one constructor when in reality the same change must be made to every
constructor. Having the bulk of the work of the constructor done by a common method
(or shared by using this()−constructors) eliminates this error.

Sharing redundant code shortens your program, making it easier to read, understand,
modify, and maintain. It also helps to isolate a single point where each piece of behavior
is performed. This single point can be understood, modified, and debugged once rather
than each time it (redundantly) appears.

13.2.4 Example

In the example immediately below, we will modify code based on redundancy, i.e., the
repetition rule of thumb. The result will also make our code more succinct and easier to
read. The newly created method will be succinctly summarizable and a legitimately
separable subtask.

Consider a bank account, which might have a method that allows the account's owner to
obtain balance information: int getBalance(Signatory who) throws
InvalidAccessException { if (! who == this.owner) { throw new
InvalidAccessException(who, this) } // else return this.balance; }

It might also have a withdraw method that allows the owner to remove amount from the
account, returning that amount as cash: public Instrument withdraw(int amount,
Signatory who) throws InvalidAccessException { if (! who == this.owner) { throw new
InvalidAccessException(who, this) } // else this.balance = this.balance − amount; return
new Cash(amount); }

We could abstract the common pattern here, which is the verification of a signatory's
right to access this account: private void verifyAccess(Signatory who) throws
InvalidAccessException { if (! who == this.owner) { throw new
InvalidAccessException(who, this) } }

Now, we can rewrite getBalance and withdraw: int getBalance(Signatory who) throws
InvalidAccessException { this.verifyAccess(who); return this.balance; } public

388 Chapter 13 Encapsulation

Instrument withdraw(int amount, Signatory who) throws InvalidAccessException {
this.verifyAccess(who); this.balance = this.balance − amount; return new Cash(amount);
}

Much simpler, much more succinct, and in addition if we later need to modify the access
verification routine, there is only a single place — verifyAccess() — where changes
will need to be made.

Style Sidebar

Procedural Abstraction

 Use procedural abstraction when a method call would make your code (at
least one of)

 shorter, or♦

 easier to understand.♦

•

 Your method should be concisely describable as “single function”, though
the function may itself have many pieces.

•

 Use parameters to account for variation from one invocation to the next.•

 Return a value when the target of an assignment varies; leave the actual
assignment out of the method body.

•

 Share code where possible. This is especially true among constructors,
where one constructor can call another using this().

•

 Make internal helper procedures private. Make generally useful common
functionality public (or protected).

•

13.2.5 Benefits of Abstraction

Abstracting procedures — creating short, succinctly describable, non−redundant methods
— has many benefits. Even in the simple example of the preceding section, we can see
many of these.

Procedural abstraction makes it easier to read your code, especially if methods have
names corresponding to their succinct descriptions and the flow of code reads like the
logic of the English description. Compare the before−and−after withdrawal methods of
the bank account in the previous section.

Chapter 13 Encapsulation 389

Greater readability makes it easier to understand and figure out how to modify and
maintain code. Separating functionality into bite−sized pieces also creates many
opportunities to modify individual methods. Sharing these methods also centralizes the
locations needing modification. For example, we could add a digital signature check to
the verification procedure of the bank account by modifying only verifyAccess, not the
bodies of getBalance or withdraw.

In contrast, long methods with complicated logic can be particularly hard to modify,
either because their interconnected logic can be so difficult to understand or because it
can be hard to find the right place to make the change.

As the needs of your code change, you will also find it easier to rearrange and
reconfigure what your code does if the logical pieces of the code are separated. For
example, we might add a wireTransfer method to the bank account. In doing so, we can
reuse the verifyAccess method.

Of course, smaller methods make for bite−sized debugging tasks. It is much easier to see
how to debug access verification in the newer bank account than in the version where
each account interaction has its own verification code and where verification is intimately
intertwined with each transaction. And if we need to modify the verification procedure —
to give diagnostic information, to step through the method, or to fix it — there is a central
place to make these changes.

Procedural abstraction also makes it easier to change behavior by substituting a new
version of a single method. If a method is not private, it can be overridden by a subclass,
specializing or modifying the way in which it is carried out without changing its succinct
specification. We could, for example, have a more secure kind of bank account using the
digital signature verification method alluded to above.

Many of the advantages of procedural abstraction are also provided by good object
design. A method signature is a reasonable abstraction of the behavior of an individual
method. An interface plays a similar role for an entire object, packaging up
(encapsulating) the behavioral contract of an object so that its particular implementation
may vary. Interfaces also make it easier to see how a single abstraction can have many
coexisting implementations.

13.3 Protecting Internal Structure

Procedural abstraction is an important way to separate use from implementation and a
significant part of good program design. Procedural abstraction is not the only kind of
abstraction that you need in a program, though. Often, other techniques are used, either
alone or with procedural abstraction, to hide implementation details. For example, if you
use procedural abstraction to create local helper methods, you generally will not want
these helper methods to be available for other objects to use.

390 Chapter 13 Encapsulation

In this section, we will look at several ways to protect internal structure — such as helper
methods — from use by others. These techniques protect implementation by making
parts of the inner structure of an object inaccessible from outside that object or that group
of interrelated objects. This packaging of internal structure is another kind of
encapsulation. This section discusses some Java−specific ways to encapsulate
functionality. Many programming languages offer similar mechanisms.

13.3.1 private

One of the most straightforward ways to protect internal structure — such as fields or
helper methods — is to declare them private. We have seen in the section above how
private methods can be used for procedural abstraction — to break up a long procedure,
to capture common patterns, etc. — without exposing these functions to other objects. A
method (or other member) declared private can only be called from within the class.

Beware: This is not the same thing as saying that only an object can call its own private
methods. An object can call the private methods of any other instance of the same class.

Private is extremely effective at protecting methods and other members from being used
by other objects. However, a member declared private cannot be accessed from code
within a subclass. This means that if you modify code in a subclass that relies on a private
helper method in the superclass, you will have to recreate that private helper method.

13.3.2 Packages

An alternative to the absolute protection of private is the use of packages. A package is a
collection of associated classes and interfaces. You can define your own packages.
Libraries — such as the Java source code or the cs101 distribution — generally define
packages of their own. The association among classes and interfaces in a package can be
as loose or as tight as you wish to make it.

Sometimes the association among objects is merely by convenience: many kinds of
objects deal with the same kind of thing. Most of the cs101 packages are of this sort.
Often, it makes sense to define a set of interrelated classes and interfaces in a single
package and to provide only a few entry points into the package, i.e., a few things that are
usable from outside the package. These packages represent associations by shared
interconnectedness. Most of the interlude code is of this sort. Java defines a large number
of packages, some of each kind.

In the bank account, we might well choose to define the interface Instrument
(representing cash and checks, among other things) and classes BankAccount,
CheckingAccount, Cash, etc. in a single package, say finance.

Packages play two roles in Java. The first concerns names and nicknames. Packages
determine the proper names of Java classes and interfaces. The second role of packages is

Chapter 13 Encapsulation 391

as a visibility modifier somewhere between private and public.

13.3.2.1 Packages and Names

A class or interface is declared to be in particular package packageName if the first
non−blank non−comment line in the file says

package packageName;

packageName may be any series of Java identifiers separated by periods, such as
java.awt .event and cs101.util. By convention, package names are written entirely in
lower case. A file that is not declared to be in a specific package is said to be in the
default package, which has no name.

Every Java class or interface actually has a long name that includes its package name
before its type name. So, for example, String is actually java.lang.String, because the first
line of the file String.java says

package java.lang;

and Console is cs101.util.Console, because it is declared in a file that begins

package cs101.util;

Any (visible) class or interface can always be accessed by prefacing its name by its
package name, as in java.awt.Graphics or cs101.util.Console. If we declare the package
finance as described above, the interface finance.Instrument would actually
have a distinct name from the interface music.Instrument.

In some cases, you can also access the class more succinctly. If you include the statement

import packageName.ClassName;

after the (optional) package statement in a file, you may refer toClassName using just
that name, not the long (package−prefaced) name. So, for example, after

import cs101.util.Console;

the shorter name Console may be used to refer to the cs101.util.Console class.
Similarly,

import packageName.*;

means that any class or interface name inpackageName may be referred to using only
its short name, unprefaced bypackageName.

392 Chapter 13 Encapsulation

Note, however, that this naming role for packages is only one of convenience and does
not provide any sort of actual encapsulation. The use of a shorter name does not give you
access to anything additional. In particular, it does not change the visibility of anything.
Anything that can be referred to using a short name after an import statement could have
been referred to using the longer version of its name in the absence of an import
statement.

There are three exceptions to the need to use an import statement, i.e., three cases in
which the shorter name is acceptable even without an explicit import.

 Names in the default package can always be referred to using their short names.1.

 Names in the current package (i.e., the package of which the file is a part) can
always be referred to using their short names.

2.

 Names in the special package java.lang can always be referred to using their
short names.

3.

You are not allowed to have an import statement that would allow conflicts. So, for
example, you could not have both statements

import finance.*;
import music.*;

if both packages contain a type named Instrument. You could, however,

import finance.BankAccount;
import music.*;

since the first of these import statements doesn't shorten the name of the interface
finance.Instrument. If you do import finance.BankAccount and music.*,
you can still refer to the thing returned by BankAccount's withdraw method as a
finance.Instrument.

Chapter 13 Encapsulation 393

Package Naming Summary

A class or interface with nameTypeName that is declared in package
packageName may always be accessed using the name
packageName.TypeName, provided that it is visible. (See the visibility
summary sidebar.)

The class or interface may be also accessed by its abbreviated name,TypeName,
without the package name, if one of the following holds:

 The class or interface is declared in the default (unnamed) package.•

 The class or interface is declared in the current package, i.e.,
packageName is also the package where the accessing code appears.

•

 The class or interface is declared in the special package java.lang, i.e.,
packageName is java.lang.

•

 The file containing the accessing code also contains one of the following
import statements:

import packageName.TypeName;♦

import packageName.*;♦

•

13.3.2.2 Packages and Visibility

The second use of packages is for visibility and protection. This use does accomplish a
certain kind of encapsulation. We have already seen private and public, visibility
modifiers that prevent the marked member from being seen or used or make it accessible
everywhere. These two modifiers are absolute. Packages allow intermediate levels of
visibility.

Between private and public are two other visibility levels. One uses the keyword
package. The other is the level of visibility that happens if you do not specify any of
the other visibility levels. This is sometimes called “package” visibility, although it
differs from friendly visibility in other languages and, additionally, there is no
corresponding keyword for it.

A member marked protected visible may be used by any class in the same package.
In addition, it may be referenced by any subclass. It is illegal — and causes a compiler
error — if something outside the package, not a subclass, tries to reference a member
marked protected visible.

394 Chapter 13 Encapsulation

A member, class, or interface not marked with a visibility modifier is visible only within
the package. It may not be accessed even by code within subclasses of the defining class
or interface, unless they are within the package.

This means that classes and interfaces may be declared without the modifier public, in
which case they can only be used as types within the package. Members may be declared
without a modifier, in which case they can be used only within the package, or they may
be declared protected, in which case they can be used only within the package or
within a subclass. A non−public class or interface need not be declared in its own
separate Java file.

Note, however that although a subclass may increase the visibility of a member, it may
not further restrict visibility. So a subclass overriding a protected method may
declare that method public, but not unmodified (package) or private.

There is no hierarchy in package names. This means that the package java.awt.event is
completely unrelated to the package java.awt; their names just look similar.

Visibility Summary

A member, class, or interface marked public may be accessed anywhere.

A member marked protected may be accessed anywhere within the containing
package or anywhere within a subclass (or implementing class).

A member, class, or interface not marked has “package” visibility and may be
accessed anywhere and only within the containing package.

A member marked private may only be accessed within the containing class or
interface.

We can use this approach to encapsulate certain aspects of our BankAccount example
without making all of the relevant members private. After all, we want to protect these
members from misuse by things outside the financial system (and therefore presumably
outside the package finance), not from legitimate use by other things within the
banking system.

So we might declare: public class BankAccount { ... }

and public interface Instrument { public abstract int getAmount(); public abstract void
nullify(); }

Chapter 13 Encapsulation 395

but class Cash implements Instrument { private int amount; private boolean valid;
protected Cash(int amount) { this.amount = amount; this.valid = true; } public int
getAmount() { return this.amount; } protected void nullify() { this.valid = false; } }

This absence of the keyword public on the class definition means that the class Cash
is accessible only to things inside the finance package. The Cash constructor is
declared protected, so Cash may be created only from within this package. But the
two methods that Cash implements for its interface, Instrument, must be public
because you cannot reduce the visibility level declared for a method and the interface's
methods are declared public.

[Footnote: The methods of a public interface must be public, but an interface not declared
public may have methods without a visibility modifier.]

Unfortunately, the guarantees of packaging are not absolute. There is nothing to prevent
someone else from defining a class to reside in an arbitrary package. For example, I could
declare a class Thief in package financial, allowing Thief instances full access to
the Cash constructor.

13.3.3 Inheritance

Inheritance can be used as a way of hiding behavior. Specifically, you can create hidden
behavior by extending a class and implementing the additional behavior in the subclass.
Conversely, labeling an object with a name of a superclass type has the property that it
makes certain members of that object invisible.

You cannot invoke a subclass method on an object labeled with a superclass type that
does not define that method, even though the object manifestly has the method. You can
take advantage of this in combination with the visibility modifiers, for example creating a
package−only subclass of a public class. Outside the package, instances of this subclass
will be regarded as instances of the superclass, but because the subclass type is not
available (since it is not visible outside the package), its additional features cannot be
used.

For example, a specialized package−internal type of BankAccount might allow checks
to be written:

396 Chapter 13 Encapsulation

class CheckingAccount extends BankAccount {
 ...

 protected Instrument writeCheck(String payee,
 int amount, Signatory who) {
 try {
 return new Check(payee, amount, who);
 } catch (BadCheckException e) {
 return null;
 }
 }
}

Now, if I have a CheckingAccount but choose to label it with a name of type
BankAccount, I cannot write a check from that account:

BankAccount rainyDayFund = new CheckingAccount(...);
rainyDayFund.withdraw(10000);

works fine, but not

rainyDayFund.writeCheck(“Tiffany's”, 10000, diamondJim);

That is, the only methods available on an expression whose type is BankAccount are
the BankAccount methods. The fact that this is really a CheckingAccount is not
relevant.

The idea of using superclass types as ways of abstracting the distinctions between a
CheckingAccount and a MoneyMarketFund is an important one. Sometimes
subclasses provide extra (or different versions of) functionality. These distinctions are not
necessarily relevant to the user of the class, who should be able to treat all
BankAccounts uniformly.

Note, however, that the true type of an object is evident at the time of its construction; it
must be constructed using the class name in a new expression. Also, if the type is visible,
an explicit cast expression can be used to access subclass properties.

[Footnote: For example,

(CheckingAccount) rainyDayFund;

]

Finally, recall the discussion in chapter 10 on the inappropriateness of inheritance unless
you are legitimately extending behavior. Inheritance should not be used, for example,
when you need to “cancel” superclass properties.

Chapter 13 Encapsulation 397

13.3.4 Clever Use of Interfaces

The discussion above of inheritance and encapsulation applies doubly for interfaces.
Interfaces are a good way of achieving the subtype properties of inheritance without the
requirements of strict extension. Further, an interface type cannot contain
implementation, only static final fields and non−static method signatures. This means
that an interface cannot divulge any properties of the implementation that might vary
from one class to another or that a subclass might override. If it's in the interface, it's in
every instance of every class that implements that interface.

The example in the preceding section of a CheckingAccount protected by
subclassing are even cleaner in the case of the Cash and Check classes, which are
package−local but implement the public interface Instrument. This means that things
outside the package may hold Cash or Check objects, but will not know any more than
that they hold an Instrument. Any methods defined by Cash or Check but not by
Instrument are inaccessible except inside the package finance.

Like a superclass, the protections of an interface can be circumvented if the implementing
class type is visible to the invoking code. And, as always, the true type of an object is
known when you invoke its constructor.

These issues are covered further in chapters 4 and 8, on Interfaces and Designing with
Objects.

13.4 Inner Classes

The final topic in this chapter is inner classes. Inner classes allow a variety of different
kinds of encapsulation. At base, an inner class is a remarkably simple idea: An inner
class is a class defined inside another. There are several varieties of inner classes, and
some of their behavior may seem odd.

Because an inner class is defined inside another class, it may be protected by making it
invisible from the outside, for example by making it private. This makes inner classes
particularly good places to hide implementation. The actual types of private inner classes
are invisible outside of their containing objects, making the inheritance and interface
tricks of the previous section more powerful.

Conversely, inner classes can also be used to protect their containing objects. An inner
class lives inside another object and has privileged access to the state of this “outer”
object. For this reason, inner classes can be used to provide access to their containing
objects without revealing these outer objects in their entirety. That is, an inner class's
instance(s) can (perversely) be used to limit access to its containing class.

Beware: Although an inner class is defined inside the text of another class, there is no

398 Chapter 13 Encapsulation

particular subtype relationship established between the inner and outer classes. For
example, an inner class normally does not extend its containing (outer) class.

13.4.1 Static Classes

A static inner class is declared at top level inside another class. It is also declared with
the keyword static. Static inner classes are largely a convenience for defining multiple
classes in one place. A static class declaration is a static member of the class in which it
is declared, i.e., it is similar to a static field or static method declaration.

Understanding static inner classes is quite straightforward. There are only a few real
differences between a static inner class and a regular class. First, the static inner class
does not need to be declared in its own text file, even if it is public. In contrast, an
ordinary public class must be declared in a file whose name matches the name of the
class. Second, the static inner class has access to the static members of its containing
class. This includes any private static methods or private static fields that the class may
have.

The proper name of a static inner class isOuterClassName.InnerClassName.

Beware: This naming convention looks like package syntax (or field access syntax),
but it is not.

The constructor for a static class is accessed using the class name, i.e.,

new OuterClassName.InnerClassName()

perhaps with arguments as with any constructor.

13.4.2 Member Classes

A member class is defined at top level inside another class, but without the keyword
static. A member class declaration is a non−static member of the class in which it is
declared, i.e., it is similar to a non−static field or method declaration. This means that
there is exactly one inner class (type) corresponding to each instance of the outer class. If
there are no instances of the outer class, there are in effect no inner class types. When an
outer instance is created, a corresponding inner class (i.e., factory) is created and may be
instantiated. Note that this does not necessarily make any inner class instances; it just
creates the factory object. The inner class and all of its instances have privileged access to
the state of the corresponding outer class instance. That is, they can access members,
including private members.

An example may make this clearer. Suppose that we want to have a Check class
corresponding to each CheckingAccount. The Check class that corresponds to my
CheckingAccount is similar to the Check class that corresponds to your

Chapter 13 Encapsulation 399

CheckingAccount, but with a few differences. Specifically, my Check class (and any
Check instances I create) should have privileged access to my CheckingAccount, while
your Check class should have privileged access to your CheckingAccount. So, in effect,
the Check class corresponding to my CheckingAccount is different from the Check class
corresponding to your CheckingAccount. It differs precisely in the details of the
particular CheckingAccount to which it has privileged access. Creating a third
CheckingAccount — say, Bill Gates's CheckingAccount — should cause a new kind of
Check, Bill Gates's Checks, to come into existence. These Checks differ from yours and
mine. Note that creating Bill Gates's CheckingAccount also creates Bill Gates's Check
type, but doesn't necessarily create any of Bill Gates's Check instances. Bill still has to
write those...

400 Chapter 13 Encapsulation

class CheckingAccount extends BankAccount {
 ...

 protected class Check implements Instrument {

 private BankAccount originator = CheckingAccount.this;
 private String payee;
 private int amount;
 private boolean valid;
 ...

 protected Check(String payee, int amount, Signatory who) {

 if (! who.equals(CheckingAccount.this.owner)) {
 throw new BadCheckException(this);
 }

 this.validate(Signatory);
 this.payee = payee;
 this.amount = amount;
 this.valid = true;
 }

 Instrument cash() throws BadCheckException {

 if (! this.valid) {
 throw new BadCheckException(this);
 }

 Instrument out = this.originator.withdraw(this.amount);
 this.nullify();
 return out;
 }
 }
}

In this case, there is in effect one Check class for each CheckingAccount. This is
precisely what you'd want: each CheckingAccount has a slightly different kind of Check,
varying by who is allowed to sign it, etc.

The proper name of a member class isinstanceName.InnerClassName, where
instanceName is any expression referring to the containing instance. So a way to
name Bill's check type is gatesAccount.Check (assuming gatesAccount is
Bill's CheckingAccount), and he can write a new Check using

new gatesAccount.Check(worthyCharity, 1000000, billSignature)

Note that he can't just say new Check(...), because that leaves ambiguous whether
he's writing a check from his account or from mine.

Chapter 13 Encapsulation 401

There is a special syntax that may be used inside the inner class to refer to the containing
(outer class) instance:OuterClassName.this. For example, in the Check
constructor code above, a particular Check's Signatory is compared against the owner of
the containing CheckingAccount by comparing it with the owner of the containing
CheckingAccount instance. This ensures that I can't sign a Bill Gates Check, nor he one
of mine. It is accomplished by looking at CheckingAccount.this's owner field.
Note the use of the CheckingAccount.this syntax to get at the particular
CheckingAccount whose Check class is being defined.

The Check serves as a safely limited access point into the CheckingAccount. For
example, each Check knows its CheckingAccount's owner. When a new Check is being
created, the Check's Signatory is compared against the account owner
(CheckingAccount.this.owner, a field access expression) to make sure that this person is
an authorized signer. The identity of the allowable Signatory of the check is hidden, but it
is fully encapsulated inside the Check itself. Anyone can get hold of the Check without
being able to get hold of the Signatory (or BankAccount balance) inside.

13.4.3 Local Classes and Anonymous Classes

There are two additional kinds of inner classes, local classes and anonymous classes.
They are briefly explained here but their intricacies are beyond the scope of this chapter.

A local class declaration is a statement, not a member. A local class may be defined
inside any block, e.g., in a method or constructor. There is in effect exactly one local
class for each execution of the block. For example, if a local class is defined at the
beginning of a method body, there is one local class type corresponding to each
invocation of the method, i.e., the class depends on the invocation state of the method
itself.

The syntax of a local class method is much like member class declaration, but the name
of a local class may only be used within its containing block. A local class's name has the
same visibility rules as any local name, i.e., its scope persists from its declaration until
the end of the enclosing block. You may only invoke a local class's constructor with a
new expression within this scope. You may return these instances from the method or
otherwise use these instances elsewhere, but their correct type will not be visible
elsewhere. Instead, you must refer to them using a superclass or interface type.

A local class has privileged access to the state of its containing block as well as to the
state of its containing object (class or instance). The local class may access the
parameters of its containing method, as well as any local variables in whose scope it
appears, provided that they are declared final. If a local class is defined in a nonstatic
member (method or constructor), the local class's code may access its containing instance
using theOuterClassName.this syntax. If a local class is defined in a static
member (e.g., in a static method), the local class has only a containing class, not a
containing instance.

402 Chapter 13 Encapsulation

An anonymous class declaration is always a part of an anonymous class instantiation
expression. Anonymous classes may be defined and instantiated anywhere where an
instantiation expression might occur. They have a special, very strange syntax. An
anonymous class is only good for making a single instance as an anonymous class
declaration cannot be separated from its instantiation. Anonymous classes are a nice
match for the event handling approaches of the Event Delegation chapter.

The syntax for an anonymous class declaration−and−instantiation expression is

new TypeName() {memberDeclarations}

whereTypeName is any visible class or interface name and memberDeclarations are
non−static field and method declarations (but not constructors).

[Footnote: If there is necessary instance−specific initialization of an anonymous class,
this may be accomplished with an instance initializer expression. Such an expression is a
block that appears at top level within the class and is executed at instance construction
time.]

If TypeName is a class, the anonymous class extends it; ifTypeName is an interface,
the anonymous class implements it. In either case, memberDeclarations must include any
method declarations required to make an instantiable (sub−)class. The evaluation rules
for this expression create a single instance of this new — and strictly nameless — class
type. Like a local class, the anonymous class's code may access any final parameters or
local variables within whose scope it appears, and may useOuterClassName.this
to refer to its containing instance if its declaration/construction expression appears within
a non−static member.

Chapter 13 Encapsulation 403

Inner Classes

Type Name (i.e., how to refer to the type)
Static Inner

Class
OuterClass.InnerClass

Member
Class

OuterInstance.InnerClass

Local
Class

InnerClass

Anonymous
Class

None

Type Name Accessibility (i.e., where you may refer to the type)
Static Inner

Class
Like static members (public, protected, private, etc.)

Member
Class

Like non−static members (public, protected, private, etc.)

Local
Class

Like local variables, i.e., only within the enclosing block

Anonymous
Class

Invisible

Class is contained within:
Static Inner

Class
Outer class

Member
Class

Instance of the outer class

Local
Class

Block

Anonymous
Class

Expression

404 Chapter 13 Encapsulation

Does the inner class have access to static members of the
containing class?

Static Inner
Class

Yes

Member
Class

Yes

Local
Class

Yes

Anonymous
Class

Yes

Does the inner class have access to the instance of the
containing class (including its fields and methods)?

Static Inner
Class

No

Member
Class

Yes, by using OuterClass.this

Local
Class

Yes, by using OuterClass.this

Anonymous
Class

Yes, by using OuterClass.this

Does the inner class have access to the parameters and local
variables of the containing block?

Static Inner
Class

No

Member
Class

No

Local
Class

Yes, if they are declared final

Anonymous
Class

Yes, if they are declared final

Chapter 13 Encapsulation 405

Syntax for declaring:
Static Inner

Class
visibility static class ClassName { members }

Member
Class

visibility class ClassName { members }

Local
Class

class ClassName { members }

Anonymous
Class

Only possible in instantiation (see below)

Where declared?
Static Inner

Class
At the top level in OuterClass

Member
Class

At the top level in OuterClass

Local
Class

A statement inside a block (including method or constructor)

Anonymous
Class

In an anonymous class instantiation expression

Syntax for instantiation:
Static Inner

Class
new OuterClass.InnerClass(...)

Member
Class

new OuterInstanceExpression.InnerClass(...)

Local
Class

new InnerClass(...)

Anonymous
Class

new SuperTypeName() { members }

406 Chapter 13 Encapsulation

Chapter Summary

 An abstraction relies only on general properties, leaving implementation details
to vary.

•

 Encapsulation packages up and hides those details.•

 Procedural abstraction uses methods to accomplish abstraction and encapsulation.•

 A method should be short, have a succinctly summarizable function, and not
contain code that is redundant with other methods.

•

 Abstraction and encapsulation enhance the readability, comprehensibility,
modifiability, and maintainability of code.

•

 Packages provide grouping among interrelated classes.•

 The full name of a class or interface is prefaced by its package name.

 Import statements allow you to circumvent this longer name.♦

 Some other short names are automatically available, even without an
import statement.

♦

•

 Visibility modifiers limit access to class members, including inner classes.
Together with the use of superclass or interface type names, they provide a way to
limit access to an object.

•

 Inner classes are a mechanism for defining one class inside another.

 This can be used to hide the inner class.♦

 This can also be used to limit access to the outer class by distributing the
inner class instead.

♦

•

Chapter 13 Encapsulation 407

Exercises

408 Chapter 13 Encapsulation

Chapter 14

 Intelligent Objects and Implicit
Dispatch

Chapter Overview

 How can I exploit method “ownership” to make objects do what I want?•

 How do I pass behavior around?•

 How do I know which method will be invoked?•

Methods belong to objects. In some cases, as when getter and setter methods allows
access to an object's internal state, the reason for housing methods in objects is clear. But
in many cases, it may be less obvious why a method ought to be affiliated with a
particular object. In this chapter, we look at several cases in which methods are used in
concert with their owning objects to accomplish tasks that might not be obvious.

Methods can be used as a way to create implicit dispatch. Many objects, belonging to
many different classes, can each be given a method of the same name (and footprint). In
this case, dispatching to the correct code is as simple as asking the object to perform this
method for you.

Fixing the name of the method but leaving the owning object to vary allows you to do a
wide range of things. You can, in effect, pass a method as an argument (by passing its
containing object), return a method from a procedure (by returning its containing object),
or store it in a name or other structure (by storing its containing object). You can
remember who called you and arrange to call that object back; you can build complex

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

homogeneous structures by exploiting the fact that one object is associated with other,
equally intelligent, objects that can cooperatively solve problems that none could solve
individually.

Each of these mechanisms works because every method is associated with an object. If
the method name is fixed at the time that the program is written, its target object can be
allowed to vary, allowing a runtime decision as to which piece of code — which
instructions, which method body — should actually be executed.

Objectives of this Chapter

 To understand Java's method dispatch mechanism.1.

 To be able to use the same−named method in different classes of objects to create
an implicit dispatch.

2.

 To appreciate how Runnables can be used to encapsulate procedures.3.

 To learn how to set up and use callbacks so that a method can convey
information to its calling object without returning.

4.

 To recognize various forms of recursion and to be able to use structural recursion
as a problem−solving technique.

5.

 To understand, recognize, learn how, increase familiarity, master details,
appreciate, discover, be able to ...

6.

14.1 Procedural Encapsulation and Object
Encapsulation

In the previous chapters, we saw how a central control loop can be used as a dispatcher,
invoking different methods at different times depending on circumstances such as the
value of a particular piece of state. We also saw how the different responses can be
packaged up inside methods and how these methods in turn can be encapsulated inside
objects. In this chapter, we will take these ideas one step further and use Java's method
dispatch mechanism (plus some clever design) to determine what response is appropriate
under various circumstances.

Before we turn to the use of objects as a dispatch mechanism, let's briefly review some of
the properties of methods and of objects.

410 Chapter 14 Intelligent Objects and Implicit Dispatch

A method is a set of instructions to be followed. The method instructions are executed
when an instruction−follower evaluates a corresponding method invocation expression,
i.e., a call to the method. The method instructions may require some information to be
able to execute; these are the arguments to the method. The method instructions may also
produce some information; this is the method's return value.

Every method belongs to a particular object; there are no methods “just floating around”
in Java. Each method body is textually contained in a class definition. Regular methods
belong to individual instances of the class in which they are textually contained. (Static
methods belong to the class object itself.)

For example, if yesBox is a Checkbox and you want to find out whether yesBox is
currently selected, you can ask yesBox to supply you with that information by using the
method invocation expression yesBox.isSelected(). There's no way to just ask
isSelected(), though: you have to know whose isSelected() method it is.

Methods encapsulate behavior, but they do not by themselves encapsulate state. This is
the role of objects. An object typically contains both methods — sets of instructions —
and persistent information. For example, the Checkbox named by yesBox has a method
called isSelected(), which provides instructions for how to determine whether
yesBox is currently checked. When the expression yesBox.isSelected() is
evaluated, those instructions are executed and the desired information is produced. But
when the method is not being invoked, the method itself doesn't have any information or
action. In contrast, even in the absence of any method invocation, the Checkbox yesBox
contains state indicating whether it is currently selected, perhaps in the form of a private
boolean field.

Objects, then, package both behavior (in the form of methods that can be invoked) and
persistent state that provides a background context for that behavior. (Presumably
yesBox.isSelected() behaves differently depending on whether the hypothetical
private boolean field is true.) An object exists even when none of its methods is being
invoked, and its fields persist between method invocations. An object is thus a powerful
mechanism for modeling parts of the world. By making that state internal to the object,
hiding it from external access, and providing a set of methods that give selective access to
that state, objects can be used to encapsulate the coherent behavioral aspects of
real−world things. The method isSelected() by itself would have little meaning.
The object yesBox provides a context for the isSelected() method, so that it
legitimately models coherent persistent behavior.

The name of a method to be invoked must be chosen at the time that you are writing your
program. In contrast, the particular object whose method will be invoked need not be
known until the time that you actually run the program. For example, when the
expression yesBox.isSelected() is written, the method name — isSelected
— and even its footprint — no arguments — is already known. No other method can be
invoked with this expression. But at the time that the expression is written, it may not be

Chapter 14 Intelligent Objects and Implicit Dispatch 411

possible to tell to which object the name yesBox will refer. It may, in fact, not even be
possible to tell the exact type of the object to which yesBox refers, although we know
that it will be some type of Checkbox. (It could be any subtype of Checkbox.)

In the remainder of this chapter, we will see how fixing the method name and allowing its
target object to vary gives the programmer a great deal of additional power. In the first —
central — example of this technique, we will shift specialized behavior from their
previous location in the handler methods within a single object to a new role within
separate objects, objects encapsulating both those handler methods and associated state.
We will see how this migration of behavior from procedural encapsulation to object
encapsulation provides a different model for dispatch, and how it can be used to make
object−oriented programming a remarkably powerful technique.

14.2 From Dispatch to Objects

Consider the following problem: You are writing code that will retrieve objects, one at a
time, and print them out to the user. Some of these objects will be Strings. Some of the
objects will be Points, items representing two−dimensional coordinates. A Point object
has methods to retrieve its individuate coordinates, called getX() and getY(), each
returning an int. And some of the objects will be Dimensions, items representing
two−dimensional extents, with int−returning getWidth() and getHeight() methods. Your
job is to write the printObject method.

14.2.1 A Straightforward Dispatch

You might implement this by using a simple dispatch mechanism. Since this dispatch is
done on the basis of the object's class, you cannot use a switch statement. So we'll try
an if:

412 Chapter 14 Intelligent Objects and Implicit Dispatch

public void printObject(Object o) {
 if (o instanceof String) {
 Console.println(o);
 } else if (o instanceof Point) {
 Point p = (Point) o;
 Console.println(“Point: (”
 + p.getX()
 + “,”
 + p.getY()
 + “)”);
 } else if (o instanceof Dimension) {
 Dimension d = (Dimension) o;
 Console.println(“Dimension: (”
 + d.getWidth()
 + “,”
 + d.getHeight()
 + “)”);
 }
}

[Footnote: This code suffers from a few problems, not the least of which is that it doesn't
do anything about the possibility that o is none of the above. While we'd never write such
code in a real application, we'll skip the else error condition clause here for pedagogic
succinctness.]

14.2.2 Procedural Encapsulation

Of course, knowing what we do about procedural encapsulation, this looks like a superb
opportunity to break out the concisely describable code. There are two relatively obvious
routines lurking here:

public String pointToString(Point p) {
 return “Point: (”
 + p.getX()
 + “,”
 + p.getY()
 + “)”;
}

and

Chapter 14 Intelligent Objects and Implicit Dispatch 413

public String dimensionToString(Dimension d) {
 return “Dimension: (”
 + d.getWidth()
 + “,”
 + d.getHeight()
 + “)”;
}

We might also, for symmetry, add

public String stringToString(String s) {
 return s;
}

although it doesn't seem particularly well−motivated at the moment.

Given these routines, we might rewrite printObject as

public void printObject(Object o) {
 if (o instanceof String) {
 Console.println(this.stringToString((String) o));
 } else if (o instanceof Point) {
 Console.println(this.pointToString((Point) o));
 } else if (o instanceof Dimension) {
 Console.println(this.dimensionToString((Dimension) o));
 }
}

14.2.3 Variations

The new printObject still has a certain amount of redundant code. We can pushing the
Console.println out of the individual ifs, but then we'll need to remember the String
returned by each toString method. We could write

414 Chapter 14 Intelligent Objects and Implicit Dispatch

public void printObject(Object o) {
 String s = “”;
 if (o instanceof String) {
 s = this.stringToString((String) o);
 } else if (o instanceof Point) {
 s = this.pointToString((Point) o);
 } else if (o instanceof Dimension) {
 s = this.dimensionToString((Dimension) o);
 }
 Console.println(s);
}

In yet another optimization, we could actually transfer the coercion into the individual
toString methods, calling them on Objects rather than on specialized types. This makes
the methods somewhat less general — what if they're called on the wrong type of
objects? — but if we can be sure that they'll always be called appropriately, it cleans up
our dispatch code further.

public String pointToString(Object o) {
 Point p = (Point) o;
 return “Point: (”
 + p.getX()
 + “,”
 + p.getY()
 + “)”;
}

public String dimensionToString(Object o) {
 Dimension d = (Dimension) o
 return “Dimension: (”
 + d.getWidth()
 + “,”
 + d.getHeight()
 + “)”;
}

public String stringToString(Object o) {
 return (String) s;
}

Now the dispatch routine reads

Chapter 14 Intelligent Objects and Implicit Dispatch 415

public void printObject(Object o) {
 String s = “”;
 if (o instanceof String) {
 s = this.stringToString(o);
 } else if (o instanceof Point) {
 s = this.pointToString(o);
 } else if (o instanceof Dimension) {
 s = this.dimensionToString(o);
 }
 Console.println(s);
}

14.2.4 Pushing Methods Into Objects

We can take this whole approach one step further, and in doing so dramatically simplify
our dispatcher code. Instead of trying to give this dispatcher object a toString method for
each individual type that it might need to know about, we can put the toString methods
into the individual types directly. For example, Point might have a method that says

public class Point {
//...

 public String toString() {
 return “Point: (”
 + this.getX()
 + “,”
 + this.getY()
 + “)”;
 }
}

This is just the old pointToString, with a few modifications. First, note that we've
eliminated the argument that pointToString needed. This is because the Point we're
converting is this, i.e. the particular object whose toString() method is being executed.
Second, we don't need a coercion. That's because if this set of instructions is being
executed, it is because this (Point) object's toString() method has been called, i.e., we
must be dealing with a Point. You simply can't call Point's toString() method on a
Dimension (or a String).

A similar modification gives us Dimension's toString() method:

416 Chapter 14 Intelligent Objects and Implicit Dispatch

public class Dimension {
//...

 public String toString() {
 return “Dimension: (”
 + this.getWidth()
 + “,”
 + this.getHeight()
 + “)”;
 }
}

And finally String's toString method is quite simple:

public class String {
//...

 public String toString() {
 return this;
 }
}

Now, if origin names the Point with coordinates (0,0) and square names the
Dimension with height 25 and width 25, origin.toString() returns the String
“Point: (0,0)”, while extentless.toString() returns the String “Dimension:
(25,25)”. Each object knows how to turn itself into a String using the toString() method
provided by its class.

In point of fact, the Java class java.lang.Object has a toString() method, and so any Java
object necessarily has a toString() method. In many cases, the toString() method is
inherited from Object and so prints a rather ugly representation of the object. You may
wish to override the toString() method of any class you expect to be printing out a lot. For
example, there is a real class called java.awt.Point, but its toString() method isn't quite as
succinct as the one we've given here.

14.2.5 What Happens to the Central Loop?

We have seen that writing the methods inside their respective classes makes them
considerably more succinct. After all, the toString() method of Point just has to give
instructions for how to print this, i.e., the particular Point whose toString() method is
being invoked. At the time that the method is invoked, all of the relevant information is
present in the target — the object whose method is invoked, i.e., this. But we haven't
come to the best part yet.

Chapter 14 Intelligent Objects and Implicit Dispatch 417

Suppose that our types each implement their own toString() method. What, then, does the
dispatcher look like?

The new dispatch code is

public void printObject(Object o) {
 Console.println(o.toString());
}

Where did the conditional go? The answer is that it is hidden inside Java's method
dispatch mechanism. Java decides which toString() method to invoke by looking at the
target's type.

Whenever an instruction−follower evaluates a method invocation expression, Java does a
quick calculation to determine what kind of object the target — the method's owner
object — is. Depending on the class of that object, Java looks up the appropriate method
to invoke. (The argument types also play a role in selecting the method invoked,
specifically by selecting a method whose footprint is appropriate.) This dispatch based
upon the type of the target object is a simple form of polymorphism. In general,
polymorphism means doing different things with different types of objects.

If we move the dispatchee methods out to their respective classes, we give each kind of
object its own type−specific way to respond to the request. Here, a particular — known,
fixed — method name and footprint is polymorphic with respect to the target object to
which it belongs. (Instances of many classes support the same method footprint. Each
class provides a different implementation.) By allowing the target object to vary, we
cause the same expression to invoke different pieces of code.

This approach has several benefits. First, the dispatcher becomes significantly more
succinct. Second, the code that actually does the work is associated with a specific type,
meaning that it doesn't have to worry about verifying type or coercion. Java does both
dispatch and coercion automatically. The method is necessarily invoked on a target of the
appropriate type, because the target helps to determine which method is invoked. Finally,
if a new object type is to be added (e.g., to the printObject method), the particular
instructions for converting it to a String can be added in the definition of the object's
class; printObject no longer needs to worry about which types it is suited to handle. In
fact, since toString is a method defined in the class java.lang.Object, printObject can
handle any kind of Object at all.

14.3 The Use of Interfaces

In the example above, we gained great power from pushing the conversion to a String
into each specific object type. Of course, any object type not supplied with its own
toString() method simply inherits one from its superclass. Since java.lang.Object is the

418 Chapter 14 Intelligent Objects and Implicit Dispatch

root of the class inheritance hierarchy, each class is guaranteed to have a toString()
method, if only the one defined for Object. But sometimes you will want to use
polymorphism to dispatch to a method that isn't defined on java.lang.Object. What do
you do then?

Consider the Calculator buttons of an earlier chapter. In that example, number buttons are
supposed to display themselves on the Calculator screen, while arithmetic operator
buttons are supposed to perform calculations and the clear button is supposed to erase
whatever happens to be displayed. The central dispatcher of that program checked which
button had been pressed and called the appropriate helper method, contained within the
dispatcher object.

Precisely the same sort of logic that we applied to the object printer would work here.
First, we need to define a series of object types. For example, we might have a
NumberButton class whose ten instances represent the number keys, from 0 to 9. We
might have an OperatorButton class, one of whose instances would represent the addition
function of the calculator. And we might have a ClearButton class with a single instance
corresponding to the calculator's clear key.

Each of these classes might be endowed with a buttonPressed method, to be invoked by
the dispatcher when the corresponding calculator button is pressed. For example,
ClearButton's buttonPressed method might say resetCalculator, while a NumberButton's
buttonPressed method would invoke displayDigit. Whose resetCalculator and
displayDigit methods are these? They belong to the calculator. In order to do its job, the
buttonPressed method will need to be given access to the CalculatorState — an object
representing what's going on inside the Calculator — as an argument.

public class ClearButton {

 public void buttonPressed(CalculatorState calc) {
 calc.resetCalculator();
 }
}

When the individual clear button's buttonPressed method is invoked, it will in turn ask
the calculator to reset itself.

Chapter 14 Intelligent Objects and Implicit Dispatch 419

public class NumberButton {

 private final int whichDigit;

 public NumberButton(int which) {
 this.whichDigit = which;
 }

 public void buttonPressed(CalculatorState calc) {
 calc.displayDigit(this.whichDigit);
 }
}

Note that there are ten different NumberButton instances, and each instance will need to
remember which digit it represents.

[Footnote: Once assigned, this digit doesn't change; hence, the field is declared final.]

When, for example, the 0 button's buttonPressed method is invoked, it asks its calculator
to display its digit, i.e., 0. The code for other button types is similar.

When we are done writing these button types, we will need to add code to the calculator
dispatcher (or to some other part of the system) that creates all of the necessary instances
of these classes. We might, for example, stick these instances into an array indexed by the
buttonID ints described in chapter 12. This would be a field of our animate calculator
object:

private Object[] buttonObjects = new Object[Calculator.LAST_BUTTON_ID];

And then, inside the constructor for that object, we need initialization code:

for (int buttonID = 0; buttonID < 10; buttonID = buttonID + 1) {
 this.buttonObjects[buttonID] = new NumberButton(buttonID);
}

// and so on for operators, clear....

Once we have instantiated these button types, what does the dispatcher look like? Its job
will simply be to invoke the appropriate button object's buttonPressed method.

public void act() {
 int buttonID = this.gui.getButton();
 this.buttonObjects[buttonID].buttonPressed(this.calcState);
}

420 Chapter 14 Intelligent Objects and Implicit Dispatch

There is just one problem: this code won't compile. The array buttonObjects is an array of
Objects. But most Objects don't have a buttonPressed(CalculatorState) method.

Why wasn't this a problem for the toString method of the object printer? Because each
Object has a toString() method, we didn't have to do anything special to make the
corresponding line of code — the invocation of the object's toString() method — work.
However, if we try this trick with a method that isn't possessed by every object, we will
find that our code won't compile. We can resolve this by using an interface that specifies
this contract.

public interface CalculatorButton {
 public void buttonPressed(CalculatorState calc);
}

This interface gives just the information we need — the presence of a buttonPressed
method that requires a CalculatorState — without saying anything about how a particular
CalculatorState should respond to a button's being pressed. It leaves those aspects of the
method to each class that provides an implementation for CalculatorButton's
buttonPressed method.

We will also need to go back and add this interface to each of the individual calculator
button classes. For example:

public class ClearButton implements CalculatorButton {

 public void buttonPressed(CalculatorState calc) {
 calc.resetCalculator();
 }
}

Now, we can rewrite our declaration of the buttonObjects array.

private CalculatorButton[] buttonObjects
 = new CalculatorButton[Calculator.LAST_BUTTON_ID];

Finally, our code will compile!

The calculator button is a more general example than the object printer, but both illustrate
the same set of ideas. By pushing methods out of the central dispatcher object and into
the classes representing distinct types of objects, we can package up the methods with the
information that they need to do their jobs. We can also largely eliminate the explicit
dispatcher of the chapter 12, using Java's method dispatch mechanism in its place. This

Chapter 14 Intelligent Objects and Implicit Dispatch 421

approach is very much in keeping with the philosophy of object−oriented design: keep
behavior together with state encapsulated in objects.

14.4 Runnables as First Class Procedures

We have actually seen a special case of this kind of target−polymorphism−as−dispatch in
our use of Animates as the instructions for AnimatorThreads. In that case, an
AnimatorThread does very different things depending on the class of the particular object
whose act() method it executes. In other words, AnimatorThread uses its constructor
argument — the object whose act() method it is supposed to execute — to determine
what it is supposed to do. The method footprint — act() — is fixed by the Animate
contract. Naming this method there allows the programmer to write it explicitly into
code. Remember, method names cannot be deduced and runtime, though their target
objects can.

There is a similar situation in Java involving the interface Runnable (with a single
method, run()) and the class Thread. A Thread is started on a particular object, and the
Thread follows the instructions supplied by that object's run() method. By starting them
on instances of different classes of Runnable objects, Threads can be induced to behave
in very different ways. Like act(), run() exploit's Java's target−based dispatch mechanism
to create different kinds of behavior.

But Runnables and run() can be used even without starting a new Thread, simply because
they are fixed names for executable behavior that takes no arguments.

[Footnote: Everything said here for run() could be done with another method with a
different name, but that name, too, would have to be fixed when the program is written.
For no−arguments executable code, run() and Runnable make a convenient convention. If
you wish to pass arguments to this procedure, you will need to define your own interface
and your own method signature, as Java offers no standard conventions.]

Suppose that you want to pass a procedure around from one object to another. For
example, suppose that you want to create a secret message and later, you will give that
message to a decoder that will print out your secret message. One way to do this is to
make the secret message a Runnable object and to use the secret message's run() method
as a way for the decoder to get the message out.

422 Chapter 14 Intelligent Objects and Implicit Dispatch

public class SecretMessage implements Runnable {

 private String message;

 public SecretMessage(String message) {
 this.message = message;
 }

 public void run() {
 Console.println(this.message);
 }
}

public class SecretDecoder {

 public void decode(Runnable secret) {
 secret.run();
 }
}

Now, if we have

SecretMessage message = new SecretMessage(“Meet me at midnight.”);

and

SecretDecoder decoder = new SecretDecoder();

then we can try

decoder.decode(message);

which will print

Meet me at Midnight.

to the Java console. The message stays safe inside the SecretMessage as the
SecretMessage is passed from method to method, stored in fields, returned from methods,
and otherwise passed around the system. Because it has a run() method, that method can
eventually be invoked to get the desired behavior from of the object.

In fact, by the time that this object makes it to the decoder, we might have lost track of
the fact that it is a SecretMessage. Suppose that we have an object toBeRun, and all that
we know about it is that it is a Runnable. We can still ask

decoder.decode(toBeRun);

Chapter 14 Intelligent Objects and Implicit Dispatch 423

And now we might find out, for example, that someone has replaced our message with
some Fireworks:

public class Fireworks implements Runnable {

 private Color color;

 public Fireworks(Color color) {
 this.color = color;
 }

 public void run() {
 Console.println(“Crash! Bang! You see ”
 + this.color.toString());
 }
}

Polymorphic dispatch ensures that toBeRun will print its message if it is a
SecretMessage, and will explode colorfully if it is Fireworks. You do not need to know
what kind of thing it is to arrange to send it to the right method; instead, Java's dispatch
mechanism ensures that even when you don't know exactly what type of thing you have,
the right method will be invoked.

14.5 Callbacks

A particular circumstance in which this “do the right thing” aspect of Java's method
dispatch is important is called callbacks. A callback is a situation in which one object has
invoked a method of another, and the second object needs to get some information back
to the first without returning from the method invocation. There are a few prerequisites
for callbacks:

 The invoking object must pass a reference to itself into the original invocation, or
must otherwise indicate whose method is to be “called back.”

1.

 The invoking method and the invoked method must agree upon the name of the
callback method.

2.

 The invoked method must record the reference to the invoking object — the
callback target — e.g., as a parameter to the original invocation or as a field.

3.

 At the appropriate occasion, the invoked method must invoke the callback
method on the callback target. The fixed method name is used in this expression;
the reference to the callback target is a variable.

4.

Suppose, for example, that we have an object whose purpose is to create many separate

424 Chapter 14 Intelligent Objects and Implicit Dispatch

“web spiders”, simple programs that traverse the Internet looking for interesting
information.

[Footnote: Such programs can be very useful, but you must be extremely careful in
writing them. Serious disasters have been caused by web spiders that got out of control,
for example creating so many spiders that the network filled up with spiders and couldn't
sustain its regular traffic.]

Your original object will want to know when the spider finds interesting information. But
the spider won't want to stop executing when it finds the first interesting piece of
information. Instead, the spider should take the address of its sponsor with it when it goes
crawling through the web, and any time it finds an interesting piece of information it
should “call back” the sponsor object, giving it that information without stopping its
execution.

The actual situation for a web spider is a little bit more complicated than this description
because web spiders often don't run on the same computer as their sponsor and so can't
make direct method calls. But we can use this idea as the framework for some code that
illustrates callbacks.

Chapter 14 Intelligent Objects and Implicit Dispatch 425

public class SpiderStarter {

 private String interestingStuff = “”;

 public void startSpider() {
 new Spider(this); // give invoked method

 // a reference to the invoker
 } // i.e., the callback target

// informationFound is the callback method.
 // It simply records the information...
 public void informationFound(String interestingItem) {
 if (this.interestingStuff == null) {
 this.interestingStuff = interestingItem;
 } else {
 this.interestingStuff = this.interestingStuff
 + “ and also ”
 + interestingItem;
 }
 }

// This is a simple utility method.
 public void printInfoSoFar() {
 Console.println(“I heard ” + this.interestingStuff);
 }
}

This class provides three methods. The first starts up a Spider, telling the Spider who its
sponsor is. The second provides a way for the Spider to call it back (when it finds
information). The third provides a way for other objects to ask the SpiderStarter to let it
know what information it has collected.

[Footnote: Strictly speaking, this code might be subject to problems if we start up more
than one Spider. We really need to protect the interestingStuff using synchronization, as
described in part 5 of this book. These issues don't affect the main point of this chapter,
but you should be aware of them if you want to run a code example like this one.]

The definition for Spider might read

426 Chapter 14 Intelligent Objects and Implicit Dispatch

public class Spider extends AnimateObject {

// where to record the callback target
 private SpiderStarter sponsor;

 public Spider(SpiderStarter who) {
 this.sponsor = who; // record the callback target
 }

 public void act() {
// Some code that looks for interesting stuff.

 // if you find it, call back
 this.sponsor.informationFound(interestingInfo);
 }
}

Now, we might say

SpiderStarter mamaTarantula = new SpiderStarter();
mamaTarantula.startSpider();

This starts a spider going. The “looking for interesting stuff” part of the Spider is
missing, but we can still see how a Spider might take advantage of the callback
mechanism. Since a Spider is an AnimateObject, its act() method will be executed over
and over again. Each time, if it finds some interesting information, it will invoke its
sponsor's informationFound method with the interesting information. But SpiderStarter's
informationFound method just adds the new information to its information store and
returns, so the AnimatorThread that runs the Spider AnimateObject is free to call its act()
object again.

Consider trying to write Spider without the callback. SpiderStarter doesn't call a method
of Spider's directly, so Spider can't return a String that way. Even if SpiderStarter did call
Spider directly, mamaTarantula presumably wants the Spiders to keep going even after
they find their first piece of interesting information. So it is very important that the
individual Spiders have a way to get information back without stopping their own
execution. This is precisely the kind of situation in which a callback is useful.

Callbacks are a very general mechanism that can be used any time one object needs to get
information to its invoker without returning the information directly. They require
agreement on the name of a method — perhaps specified by an interface contract — that
will be used to produce the callback. Callbacks take advantage of the idea that Java's
dispatch mechanism will call the appropriate piece of code. Good object encapsulation
ensures that the information supplied in a callback gets to the appropriate place.

Chapter 14 Intelligent Objects and Implicit Dispatch 427

14.6 Recursion

One final example of how Java's method dispatch mechanisms work is the idea of
recursion. Recursion is the name for a technique in which the same named method is
called over and over again, doing something slightly different each time. There are two
kinds of recursion: structural recursion, which is quite common in Java and other
object−oriented programming languages, and functional recursion, which is much more
prevalent in functional programming languages.

14.6.1 Structural Recursion

Structural recursion is a natural extension of method dispatch to a uniform collection of
objects. It is really just the idea that an object can act on its own behalf — i.e. provides
methods specifying its own behavior — coupled with the idea that one object can contain
— or have fields that are — other objects. For example, the calculator had (access to)
many CalculatorButton objects, and it relied on them to each provide the appropriate
behavior. Structural recursion is just like this, except that the object doing the relying and
the component object on which it relies are instances of the same class.

428 Chapter 14 Intelligent Objects and Implicit Dispatch

A.

B.

C.

Figure 14.1. Various linked lists (following code in text).
A. After defining shorty.

B. After defining list.
C. After assigning to list.

Chapter 14 Intelligent Objects and Implicit Dispatch 429

14.6.1.1 A Recursive Class Definition

Suppose, for example, that we have a class called LinkedList:

public class LinkedList {

 private LinkedList next;
 private Object contents;

 public LinkedList(Object what, LinkedList next) {
 this.contents = what;
 this.next = next;
 }

// maybe some methods....
}

To begin with, this definition is recursive. That is, the LinkedList type is defined in terms
of itself. Note that this isn't at all the same thing as saying that a particular LinkedList is
defined in terms of itself; it just means that a LinkedList consists of its contents (some
arbitrary object) and its next element, which is either nothing (i.e., this is the last element)
or also a LinkedList.

The idea of an object that has associates — or contains components — of the same type
really isn't all that strange. For example, if we have a representation for a person, we
might use the same representation for that person's parents. The same “method” for
figuring out who your father is should apply equally well to figure out who his father is.

To create a LinkedList, you need to give it a LinkedList. To make this work, there needs
to be a simple case that is not explicitly recursive. This is called a base case. In the case
of the LinkedList definition, the base case is null: null is a (non)value that can be
associated with a name of type LinkedList that is not defined in terms of a LinkedList. A
LinkedList with a null next field is the last element in the list.

So, for example, we can say

LinkedList shorty = new LinkedList(“Not least”, null);

We can also say

LinkedList list = new LinkedList(“Pen Ultimate”, shorty);

or even

list = new LinkedList(“First and foremost”,
 new LinkedList(“Sandwich filling”, list));

430 Chapter 14 Intelligent Objects and Implicit Dispatch

Each of these LinkedList objects either has a next field that refers to another LinkedList
object, or has a next field that is unassigned, i.e., has the value null.

14.6.1.2 Methods and Recursive Structure

Structural recursion is simply a way in which methods can take advantage of the
recursive definition of LinkedList. It relies on the idea that each of the recursively
contained objects is itself a full−fledged intelligent entity. For example, suppose that you
are providing a LinkedList with a method to convert itself to a String. This method might,
e.g., be suitable for printing out all of the elements contained in a LinkedList. Since one
LinkedList contains another (through its next field), we can make use of the fact that that
next element is also an intelligent LinkedList and will be able to convert itself to a String
as well.

In writing the code to convert a particular LinkedList instance to a String, there are two
possibilities.

 Perhaps this is the last element in the list, i.e., this LinkedList object's next field
is null. Then we can solve this problem simply: just convert the contents of this
object to a String.

1.

 Otherwise, this is not the last element; this object contains a non−null next
field. In this case, converting this LinkedList to a String requires converting the
contents of this object, then adding a comma, then converting this object's next
(LinkedList) to a String. But that next LinkedList is an intelligent object, too. We
can just ask it to convert itself!

2.

It may seem like there's a bit of sleight of hand going on here. This argument may look
suspiciously like a circular definition. But it is not. Let's examine the logic here carefully.

The first of these is the simple case in which there is no further recursion. As in the
definition, this is called the base case. This condition would apply if we asked the
LinkedList labeled shorty to print itself — i.e., if we invoked shorty.toString()
— which would return the String “Not Least”. There is only one element in this list,
so printing its contents suffices.

The second case is called the recursive case, the case that relies on recursion to work. It
says, roughly, I know how to convert myself to a String, and my next knows how to
convert itself to a String, so I will simply combine those two answers. Of course, the way
that the next LinkedList element converts itself to a String relies on this same code....so
here it is. Imagine this definition inside the class LinkedList, where the comment says
maybe some methods....

Chapter 14 Intelligent Objects and Implicit Dispatch 431

public String toString() {
 if (this.next == null) {
 return this.contents.toString();
 } else {
 return this.contents.toString()
 + “, ”
 + this.next.toString();
 }
}

Suppose that we invoke list.toString(). In this case, the object referred to by the
name list has contents “First and foremost”, so it would begin its answer with that
String. But that's not enough. Because list's next field isn't null, it also needs to do
something about that next field. It can't complete its answer until it knows how to print
the LinkedList that is its next field. Luckily, list.next is also a LinkedList, so it
knows how to convert itself to a String. So after “First and foremost”, list adds in a
comma. Then list invokes its next field's toString() method to find out how to
end its String.

When list.next's toString() method is invoked, it checks to see whether its
next field is null. Since it isn't, it can't use the base case. So it first converts its own
contents into a String — “Sandwich filling” — and then adds a comma, and then asks its
next field to convert itself to a String.

Once again, the LinkedList has a non−nullnext field, so once again the recursive case
is invoked, creating “Pen Ultimate” + “, ” plus the value of its next field's toString()
method.

The next field of this LinkedList is the same object referred to by the name shorty.
We've already seen how shorty converts itself to a String using the base case — returning
“Not least” — so now we can finish off “Pen Ultimate” + “, ” + “Not least”. This is
returned to list.next, completing “Sandwich filling, Pen Ultimate, Not least”.
Finally, this String is returned to the LinkedList labeled list, and that LinkedList can
return its value as a String: “First and foremost, Sandwich filling, Pen Ultimate, Not
least”.

14.6.1.3 The Power of Recursive Structure

The power of recursion here comes from the fact that each of the individual LinkedList
elements knows how to combine its next field's toString() with its own contents. “If
only my next field could supply its toString(),” the LinkedList seems to say, “I could
produce my answer.” But of course the answer for the next field can be constructed out
of its contents and itsnext field, and so on, until we come to the base case: a LinkedList
in which the next field is null, so there's no need to get its toString().

432 Chapter 14 Intelligent Objects and Implicit Dispatch

Important: It is crucial that the recursive case invoke the same−named method on a
simplerobject. That is, each recursive step must get a little bit closer to the base case.
Imagine instead a situation in which you were printing a circular LinkedList. In this case,
there would always be a next LinkedList to print, and the process would never end.

[Footnote: Actually, to prevent just such situations, the computer may have the ability to
detect this circumstance — an infinite loop — and to object to it by raising an exception.
]

A similar kind of structural recursion could be used to find out whether a particular object
is contained in a LinkedList. In this case, there are actually two base cases.

 If this.contents is the desired object, then the LinkedList
contains that object, i.e., return true.

1.

 If this.contents is not the desired object, but this.next
is null, then this LinkedList doesn't contain the desired object,
i.e., return false.

2.

 Otherwise, since this.contents is not the desired object, this
LinkedList contains the desired object exactly when the desired
object is contained by the LinkedList this.next.

3.

There's a fairly straightforward translation of this into Java code:

public boolean contains(Object what) {
 if (this.contents == what) {
 return true;
 } else if (this.next == null) {
 return false;
 } else {
 return this.next.contains(what);
 }
}

[Footnote: Actually, Java's && and || operators are guaranteed to evaluate their operands
from left to write, proceeding only until the value of the expression is known. In the case
of &&, as soon as one operand is false, no further operands need be evaluated. In the case
of ||, evaluation stops as soon as an operand is true. This means that we could rewrite
contains as:

Chapter 14 Intelligent Objects and Implicit Dispatch 433

public boolean contains(Object what) {
 return ((this.contents == what)
 || ((this.next != null)
 && this.next.contains(what));
}

]

Structural recursion is an extension of “the object can handle it” to the case in which the
method invocation expression is contained within the same method that it invokes.
Because the target of the invoked method is a “simpler” object — one that is somehow
closer to the base case — this approach ultimately produces a satisfactory answer.

14.6.2 Functional Recursion

Functional recursion is a further extension of the idea of recursion. In this case, there is
no structure whose inherently recursive nature is exploited by the recursion. Instead, the
necessary subsequent simplifications — steps to get closer to the base case — happen in
one of the method's arguments.

For example, many kinds of numerical calculations can be performed using purely
functional recursion. In this case, it is common to define one or more base cases — e.g.,
how the function should behave on a simple number such as 1 — and then to recursively
build a solution for one number out of the solution for a smaller number. Factorial is one
such function:

 The factorial of 1 is 1.1.

 The factorial of an arbitrary number, n, is n times the factorial of
n−1.

2.

The first of these is the base case. It simply produces an answer, with no recursion
necessary. The second of these is the recursive case. It wishfully assumes that you know
how to calculate the factorial of n−1, then uses that to construct the factorial of n. By
“peeling off” one number at a time, it is possible to calculate the factorial of any number.
This is really just like structural recursion, but there's no change of the method's target
here.

434 Chapter 14 Intelligent Objects and Implicit Dispatch

public int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * this.factorial(n − 1);
 }
}

Factorial of 5 is 5*factorial of 4, which is 4*factorial of 3, and so on until factorial of 1,
which is 1. So factorial of 2 is 2*1, and factorial of 3 is 3*(2*1), of 4 is 4*(3*2*1), and of
5 is 5*4*3*2*1. This is just like LinkedList's toString() method, except that the
accumulation isn't coming from changing the target of the method invocation.

Chapter 14 Intelligent Objects and Implicit Dispatch 435

Chapter Summary

 Objects encapsulate information necessary to make methods effective.•

 When multiple classes have methods with the same name, Java chooses the
method that matches the target's (most specific) type.

•

 Dispatch can be replaced by empowering objects directly. Depending on the type
of the target object, the same textual method invocation will actually call different
code. This is called method polymorphism.

•

 A common superclass or interface, providing the method signature for the
polymorphic method, is required for this kind of implicit dispatch.

•

 Method dispatch based on the target object can be used for other purposes as
well:

 Behavior can be passed to methods, returned from methods, and stored in
objects by making it the run method of a Runnable object.

♦

 An executing method can give information to the object that called it,
without returning, by using an explicitly agreed upon callback method.

♦

•

 Recursion is a situation in which one method name is invoked repeatedly.

 In structural recursion, the target of the method varies.♦

 In functional recursion, at least one of the method's arguments varies.♦

 In all recursions, there must be a base case that does not involve
recursion.

♦

 In the recursive case, the recursive call must be to a
method/target/argument that is somehow closer to the base case.

♦

•

436 Chapter 14 Intelligent Objects and Implicit Dispatch

Exercises

 Write toString() methods for an Address object and for a Date object. How would
printObject have to change if it might be asked to print an Address or a Date as
well as a String, Point, or Dimension?

1.

 Write clone() methods for Point and Dimension. (A clone() method should create
a new copy of its target object.) Write a dispatcher called cloneObject(Object o).

2.

 Write an animate AlarmedTimer class that counts by itself, as the Timer class of
chapter 9 does. In addition, it should have a setAlarm(int interval, Alarmable
who) method. When this method is invoked, the AlarmedTimer should callback
the Alarmable's alarmReached() method every int ticks. Here is Alarmable:

public interface Alarmable {
 public void alarmReached();
}

3.

 Using the LinkedList code above, add a method that returns the Object that is the
contents of the last element in a LinkedList. For example,
list.getLast() would return “Not least”, as would shorty.getLast().

4.

 Define a recursive structure for a family tree. Each person in the tree should have
a father and a mother, which should be either another person or — e.g., if the
information were not available — null. Give this a method that prints all
ancestors of a given individual.

Bonus: Give this structure the ability to print only all female ancestors (using
Console.println).

Extra Bonus: Would your female−ancestor−printer print my father's mother?

5.

Chapter 14 Intelligent Objects and Implicit Dispatch 437

438 Chapter 14 Intelligent Objects and Implicit Dispatch

Chapter 15

 Event−Driven Programming

Chapter Overview

 How do we design an entity to emphasize its responses to various events?•

In previous chapters, we have seen how an animate object can use its explicit control loop
as a dispatcher, calling appropriate methods depending on what input it receives. In this
chapter, we discuss a style of programming that shifts the emphasis from the dispatcher
to the various handler methods called by that control loop. Entities designed in this way
highlight their responses to a variety of situations, now called events. An implicit —
behind−the−scenes — control loop dispatches to these event handler methods.

This event−driven style of programming is very commonly used in graphical user
interfaces (GUIs). In Java, AWT's paint methods are an example of this kind of
event−driven programming. This chapter closes with an exploration of a portion of the
java.awt package, including java.awt.Component and its subclasses, to illustrate
the structure of programs written in an event−driven style.

Objectives of this Chapter

 To recognize event−driven control.1.

 To understand that event handlers describe responses to events, not their causes.2.

 To be able to write event handlers for simple event−driven systems.3.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

15.1 Control Loops and Handler Methods

In chapter 11, we looked at mechanisms for explicit dispatch. In that chapter, the job of
the central control loop was to decide what needs to be done and then to call a helper
procedure to do it. In this way, a single control loop can handle a variety of different
inputs or circumstances. We saw, for example, how a calculator might respond
differently to a digit, an operation, or another button such as =. The calculator's central
control loop acts as a manager, routing work to the appropriate procedures. The actual
work is accomplished by these helpers, or handler methods.

In this chapter, we will look at the same kind of architecture from a different viewpoint.
Instead of focusing on the central control loop's role as a dispatcher, we will take that
function largely for granted and look instead at control from the perspective of the
handler methods. In other words, we will explore how one writes handlers for special
circumstances, assuming that these handler methods will be called when they are needed.
By the end of this chapter, we will turn to a system in which this is true without
programmer effort, i.e., in which Java takes responsibility for ensuring that the handler
methods are called when they are needed.

The basic idea of event−driven programming is simply to create objects with methods
that handle the appropriate events or circumstances, without explicit attention to how or
when these methods will be called. These helper methods provide answers to questions of
the form, “What should I do when xxx happens?” Because xxx is a “thing that happens”,
or an event, these methods are sometimes called event handlers. As the writer of event
handler methods, you expect that the event handlers will somehow (automatically) be
invoked whenever the appropriate thing needs dealing with, i.e., whenever the
appropriate event arises.

[Footnote: Ensuring that those event handler methods will be called is a precondition for
event−driven programming, not a part of it. We will return to the question of precisely
how this can be accomplished later in this chapter.]

The result of this transformation is that your code focuses on the occasions when
something of interest happens — instead of the times when nothing much is going on —
and on how it should respond to these circumstances. An event is, after all, simply
something (significant) that happens. This style of programming is called event−driven
because the methods that you write — the event handlers — are the instructions for how
to respond to events. The dispatcher — whether central control loop or otherwise — is a
part of the background; the event handlers drive the code.

15.1.1 Dispatch Revisited

Consider the case of an Alarm, such as might be part of an AlarmClock system. The
Alarm receives two kinds of signals: SIGNAL_TIMEOUT, which indicates that it is time
for the Alarm to start ringing, and SIGNAL_RESET, which indicates that it is time for

440 Chapter 15 Event−Driven Programming

the Alarm to stop. We might implement this using two methods, handleTimeout and
handleReset.

public class Alarm {

 Buzzer bzzz = new Buzzer();

 public void handleTimeout() {
 this.bzzz.startRinging();
 }

 public void handleReset() {
 this.bzzz.stopRinging();
 }
}

Figure 15.1. A passive Alarm object, whose methods are invoked from outside.

How do these methods get called? In a traditional control loop architecture, this might be
accomplished using a dispatch loop. For example, we might make Alarm an Animate and
give it its own AnimatorThread. The job of the dispatch loop would be to wait for and
processes incoming (timeout and reset) signals. This AnimateAlarm's act method might
say:

Chapter 15 Event−Driven Programming 441

public class AnimateAlarm extends AnimateObject {

 Buzzer bzzz = new Buzzer();

 public void handleTimeout() {
 this.bzzz.startRinging();
 }

 public void handleReset() {
 this.bzzz.stopRinging();
 }

 public void act() {

 int signal = getNextSignal();
 switch (signal) {
 case SIGNAL_TIMEOUT:
 this.handleTimeout();
 break;
 case SIGNAL_RESET:
 this.handleReset();
 break;
 // Maybe other signals, too...
 }
 }
}

Figure 15.2. An active Alarm object, invoking its own methods.

Of course, the real work is still done by the handleTimeout and handleReset methods.
The job of the dispatch loop (or other calling code) is simply to decide which helper
(handler) method needs to be called. The dispatcher — this act method — is only there to
make sure that handleTimeout and handleReset are called appropriately.

442 Chapter 15 Event−Driven Programming

15.2 Simple Event Handling

What would happen if we shifted the focus to the helper procedures? What if we made
the dispatch code invisible? Imagine writing code (such as this Alarm) in which you
could be sure that the helper methods would be called automatically whenever the
appropriate condition arose. In the case of the Alarm, we would not have to write the act
method or switch statement above at all. We would simply equip our Alarm with the
appropriate helper methods — handleTimeout and handleReset — and then make sure
that the notifier mechanism knew to call these methods when the appropriate
circumstances arose. This is precisely what event−driven programming does.

15.2.1 A Handler Interface

We have said that event−driven programming is a style of programming in which your
code provides event handlers and some (as yet unexplained) event dispatcher invokes
these event hander methods at the appropriate time. This means that the event dispatcher
and the object with the event hander methods will need a way to communicate. To
specify the contract between the event dispatcher and the event handler, we generally use
an interface specifying the signatures of the event handler methods. This way, the event
dispatcher doesn't need to know anything about the event handlers except that they exist
and satisfy the appropriate contract.

In the case of the alarm, this interface might specify the two methods we've described,
handleTimeout and handleReset:

public interface TimeoutResettable {
 public abstract void handleTimeout();
 public abstract void handleReset();
}

Figure 15.3. An Alarm that handles two event types.

Chapter 15 Event−Driven Programming 443

Of course, we'll have to modify our definition of Alarm to say that it implements
TimeoutResettable:

public class Alarm implements TimeoutResettable {

 Buzzer bzzz = new Buzzer();

 public void handleTimeout() {
 this.bzzz.startRinging();
 }

 public void handleReset() {
 this.bzzz.stopRinging();
 }
}

Note that this is a modification of our original Alarm, not of the AnimateAlarm class.
The TimeoutResettable Alarm need not be Animate. In fact, if it is truly event−driven, it
will not be.

This TimeoutResettable Alarm definition works as long as some mechanism — which we
will not worry about just yet — takes responsibility for dispatching handleTimeout and
handleReset calls as appropriate. That dispatcher mechanism can rely on the fact that our
Alarm is a TimeoutResettable, i.e., that it provides implementations for these methods.
The dispatcher that invokes handleTimeout and handleReset need not know anything
about the Alarm other than that it is a TimeoutResettable.

15.2.2 An Unrealistic Dispatcher

How might our TimeoutResettable Alarm be invoked? There are many answers, and we
will see a few later. For now, though, it is worth looking at one simple answer to get the
sense that this really can be done.

A simple — and not very realistic — event dispatcher might look a lot like the act
method of AnimateAlarm. To make it more generic, we will separate that method and
encapsulate it inside its own object. We will also give that object access to its event
handler using the TimeoutResettable interface. Major differences between this code and
AnimateAlarm are highlighted. Of course, the dispatcher doesn't have its own handler
methods; its constructor requires a TimeoutResettable to provide those.

444 Chapter 15 Event−Driven Programming

public class TimeoutResetDispatcher extends AnimateObject {

 private TimeoutResettable eventHandler;

 public TimeoutResetDispatcher(TimeoutResettable eventHandler) {
 this.eventHandler = eventHandler;
 }

 public void act() {

 int signal = getNextSignal();

 switch (signal) {
 case SIGNAL_TIMEOUT:
 this.eventHandler.handleTimeout();
 break;
 case SIGNAL_RESET:
 this.eventHandler.handleReset();
 break;
 }
 }
}

The details of this dispatcher are rather unrealistic. For one thing, it is extremely specific
to the type of event, and extremely general to its event handler dispatchees. More
importantly, in event−driven programming it is quite common not to actually see the
dispatcher.

But dispatchers in real event−driven programs play the same role that this piece of code
does in many ways. For example, the dispatcher doesn't know much about the object that
will actually be handling the events, beyond the fact that it implements the specified
event−handling contract. This dispatcher can invoke handleTimeout and handleReset
methods for any TimeoutResettable, provided that the appropriate TimeoutResettable is
provided at construction time. Different dispatchers might dispatch to different Alarms.
In fact, timeout and reset are sufficiently general events that other types of objects might
rely on them.

Chapter 15 Event−Driven Programming 445

15.2.3 Sharing the Interface

Figure 15.4. An ImageAnimation is a single component that displays a sequence of
images, one at a time. For example, these frames, displayed in an ImageAnimation,

would give the impression of a clock whose hands move.

Another object that might be an event−driven user of timeouts and resets — and be
controlled by the TimeoutResetDispatcher — is an image animation. An image animation
is a series of images, displayed one after the other, that give the impression of motion. In
this case, we use the timeout event to cause the next image to be displayed, while reset
restores the image sequence to the beginning. ImageAnimation simply provides
implementations of these methods without worrying about how or when they will be
invoked.

public class ImageAnimation implements TimeoutResettable {
 private Imageframes;
 private int currentFrameIndex = 0;

// To be continued...

The image array frames will hold the sequence of images to be displayed during the
animation. When the ImageAnimation is asked to paint (or display) itself, it will draw the
Image labeled by this.frames[this.currentFrameIndex]. By changing
this.currentFrameIndex, we can change what is currently displayed. When we
do change this.currentFrameIndex, we can make that change apparent by
invoking the ImageAnimation's repaint method, which causes the ImageAnimation to
display the image associated with this.frames[this.currentFrameIndex].

We omit the setup code that loads the Images into frames and handles other construction
details.

The next segment of code is the timeout event handler, the helper method that is called
when a timeout occurs. What should the ImageAnimation do when a timeout is received?
Note that the question is not how to determine whether a timeout has occurred, but what
to do when it has. This is the fundamental premise behind event−driven programming:
the event handler method will be called when appropriate. The event handler simply
provides the instructions for what to do when the event happens. When a timeout occurs,
it is time to advance to the next frame of the animation:

446 Chapter 15 Event−Driven Programming

public void handleTimeout() {
 if (this.currentFrameIndex < (this.frames.length − 1)) {
 this.currentFrameIndex = this.currentFrameIndex + 1;
 this.repaint();
 }
}

This code checks to see whether there are any frames left. If the animation is already at
the end of the sequence, the execution skips the if clause and — since there is no else
clause — does nothing. Otherwise — if there's a next frame — the execution increments
the current frame counter, setting up the next frame to be drawn. Then, it calls
this.repaint, the method that causes the ImageAnimation to be redrawn. Recall that the
ImageAnimation paints itself using the image that is associated with
this.frames[this.currentFrameIndex].

What about a reset? What should the ImageAnimation do when it receives the signal to
reset? Handling a reset event is much like handling a timeout, but even simpler. The
ImageAnimation simply returns to the first image in the sequence:

public void handleReset() {
 this.currentFrameIndex = 0;
 this.repaint();
}

No matter what, we reset the current frame index to 0, then repaint the image animation
with the new frame. Note also that the next timeout will cause the frame to begin
advancing again.

The code to actually repaint the image, which we have not shown here, makes
this.frames[this.currentFrameIndex] appear. As a result, handleTimeout
works by changing the index to the next frame (until the end of the animation is reached);
handleReset restarts the image animation by restoring the index to the beginning index of
this.frames once more.

Both Alarm and ImageAnimation are objects written in event−driven style. That is, they
implement a contract that says “If you invoke my event handler method whenever the
appropriate event arises, I will take care of responding to that event.” Alternately, we
think of the contract as saying “When the event in question happens, just let me know.”
When building both Alarm and ImageAnimation, the question to ask is, “What should I
do when the specified event happens?”

Chapter 15 Event−Driven Programming 447

15.3 Real Event−Driven Programming

We have seen other examples of event−driven coding style. In this section, we briefly
review these and recast them in light of event−driven programming's central question,
“What should I do when xxx happens?” After reviewing these examples, we turn to look
at the relationship of event providers to event handlers.

15.3.1 Previous Examples

In chapter 9, we saw how an Animate's act method is repeatedly invoked by an
AnimatorThread. This act method is in effect an event handler. It answers the question,
“What should I do when it is time for me to act?” The Animate doesn't know who is
invoking its act method or how that invoker decided that it was time to act. It simply
knows that it is, and how to respond to that knowledge, i.e., how to act. The act method
may be invoked by an AnimatorThread instruction follower, executing at the same time
as other parts of the system. It might equally well be invoked by a TurnTakerAnimator
that controls a group of Animates and gives one Animate at a time a turn to act. This
latter approach might make sense, for example, in a board game where each player could
move only when it was that player's turn.

Similarly, we saw how a Runnable object has a run method that can be invoked in an
event−driven style. This is commonly done when the run method is invoked by starting
up a new Thread. In this case, the Runnable's run method is invoked when the Thread is
start()ed. From the perspective of the Runnable, its run method is automatically invoked
whenever it is time for the Runnable to “do its thing.” In a self−animating object like a
Clock, run might be an event−handler−like method that is called by something “outside”
(in this case, the Thread) when it is time for the Clock to begin execution.

The StringTransformer's transform methods of Interlude 1 were yet other examples of an
event−driven style. These event handler methods simply answer the question, “What
should I do when this StringTransformer is presented with a String to transform?” or
“How do I respond to such a request?” These objects provide customized
implementations for transforming strings. The decision of when to invoke these methods
are outside the control of their owning objects.

In each of the cases described above, the event producer — the thing that knows that it is
time for a handler method to be invoked — and the event handler — which responds to
the occurrence — communicate fairly directly. For example, the TimeoutResetDispatcher
polls (or explicitly asks) for signals and then directly invokes the event handler methods
of its TimeoutResettable.

15.3.2 The Idea of an Event Queue

Event−driven programming by its very nature allows a more distant relationship between

448 Chapter 15 Event−Driven Programming

event producers and event consumers. Since the producer disavows responsibility for
handling the event, it doesn't need to know or care who is taking on that responsibility; it
merely needs to indicate that the event has arisen. The event handler doesn't really care
where the event came from ; it just need to know that it will be invoked whenever the
event has happened. This dissociation between event producers and event consumers is
one of the potential benefits of programming in an event driven style.

Systems that take advantage of this opportunity to separate event producers from event
handlers generally contain an additional component, called the event queue, that serves
as an intermediary. It is important to understand how the event queue can be used and the
role that it plays as an intermediary between event producers and event handlers. Unless
you are building your own event−driven system from the ground up, it is not important
that you be able to build it. Generally, an event queue is provided as a part of any
event−based system, and the major event−based systems in Java are no exception.

Figure 15.5. An event queue serves as an intermediary between event producers and
event handlers.

The role of the event queue is to serve as a drop−off place for events that need to be
handled, sort of like a To Do list. When an object produces behavior that constitutes an
event, it reports that event to the event queue, which holds on to the event. The report of
the event may be as simple as an indication that something happened (“Timeout!”) or as
complex as a complete description of the state of the world at the time that the event
happened (e.g., the complete Wall Street Journal report on the stock market crash). What
is important is that the event queue stores (remembers) this event report.

In addition to receiving event reports, the event queue also has an active
instruction−follower that removes an event (typically the oldest one) from the queue and
notifies any interested event handler methods. This is the queue−checker/dispatcher. An
event queue also needs some way to figure out who to notify when an event has
happened. In the cases that we explore in this chapter, there is always a single event
queue per hander object, so it is always that object to which events are reported. In the
next chapter, we will discuss a system that allows finer−grained control.

Consider the TimeoutResettable event handlers described above. A timer might generate
the timeout events and deposit them into the queue. It would then return to its own
business, keeping time and paying no more attention to the event queue. A separate
instruction follower, the event dispatcher, would discover the timeout event in the queue

Chapter 15 Event−Driven Programming 449

and invoke the handleTimeout method of the relevant party. The structure of this “queue
cleaner” would be very similar to the TimeoutResetDispatcher we saw above.

15.3.3 Properties of Event Queues

This mechanism allows for a separation between the event producer and the event
handler. The instruction−follower that puts an event into the queue — the one who
generates the event — is not necessarily the instruction follower who performs the
handler method (i.e., handles the event). Instead, one or more dedicated instruction
followers have the task of processing events deposited into the queue, invoking the event
handler method(s) as needed. Event suppliers need to know only about the event queue,
not about the event handler methods.

Note that it is the event queue dispatcher's Thread (or instruction follower) that actually
executes the steps of the event handler method. (Method invocation does not change
which instruction follower is executing.) As a result, when you are writing event
handlers, it is important that the event handler code complete and return (relatively)
quickly; for example, it should not go into an infinite loop.

[Footnote: A Runnable's run method is an exception to this, because the Thread that
executes run has nothing to go back to doing. When run completes, the execution of that
Thread stops.]

If the event dispatcher invoked an event handler that did not return, the dispatcher would
be unable to process other events waiting in the queue.

You will almost never have to deal with an event queue explicitly unless you write your
own event−driven system from scratch. Most programmers who write event−driven
programs do not ever touch the event queue that underlies their systems. Instead, like
many other aspects of event−driven programming, event queueing is generally a part of
the hidden behavior of a system. However, there's nothing particularly mysterious about
it. An event queue's contract provides an enqueue (add to the queue) operation and a
dispatcher that actually invokes the event handler methods.

[Footnote: In the next chapter, we will see that some event queues also provide an event
listener registry service. This is not necessary in the event systems of this chapter, where
there is a single event queue per handler object, but provides yet another layer of
flexibility.]

In Java, the graphical user interface toolkit provides an event queue to handle screen
events such as mouse clicking and button pressing. That event queue is fairly well hidden
under the abstractions of the toolkit, so that you may not realize that it is an event queue
at all. In the next chapter, we will explore that more complex system, which is used for
most events in Java's windowing toolkit. That system decouples the event hander from
the object to whom the event happens, allowing one object to provide the handler for

450 Chapter 15 Event−Driven Programming

another's significant events. This is known as event delegation.

15.4 Graphical User Interfaces: An Extended
Example

So far, we have left open the question of where and how events get generated. This is
because in the most common kind of event system that you are likely to encounter — a
windowing system for a graphical user interface — you do not deal with event generation
directly. Instead, Java takes care of notifying the appropriate objects that an event of
interest has occurred. When you are writing graphical user interfaces in Java, you will
write event handlers without ever having to worry about when, where, and how the
appropriate events are produced.

Before we can begin to talk about event handling in graphical user interfaces, we need to
look briefly at what graphical user interfaces are and how they are built in Java. A
graphical user interface — sometimes called a GUI, pronounced “gooey” — is a visual
display containing windows, buttons, text boxes, and other “widgets.” It is common to
interact with a graphical user interface using a mouse, though a keyboard is often a useful
adjunct. Graphical user interfaces became the standard interface for personal computers
in the 1980s, though they were invented much earlier.

Figure 15.6. A sample graphical user interface.

[Footnote: This is a screen shot from Claris Home Page 3.0.]

15.4.1 java.awt

Java provides a few different ways of making graphical user interfaces. In this section,
we will take a look at the package java.awt. This package contains three major kinds of
classes that are useful for making GUIs. The first of these is java.awt.Component
and its subclasses. These are things that appear on your screen, like windows and buttons.
The immediately following subsection explores this component hierarchy. The second
major GUI class is the class java.awt.Graphics, which is involved in special kinds
of drawing. We will return to java.awt.Graphics at the end of this chapter. The
final group of classes are the event classes: the java.awt.Event class together with

Chapter 15 Event−Driven Programming 451

the classes in the java.awt.Event package. We'll come back and look at AWT
Events in the event delegation chapter. Here we'll deal only with one (pseudo−)event,
painting. In the remainder of this section, we are going to focus on Components and, in a
bit, Graphics.

The event that we will be concerned with here is painting. That is, this is the event that
occurs when a window or other user interface object becomes visible, is resized, or for
other reasons needs to be redrawn. This event happens to a Component. In order to
handle this event you need to know what the current state of the drawing is, including
both its coordinate system and what if anything is currently visible. That information is
held by a Graphics. So when the event happens, it takes a form roughly paraphrased as
“paint yourself on this screen.” The event handler belongs to a Component — the “self”
to paint — and it takes a single argument, a Graphics — the “screen” on which to paint.

15.4.2 Components

A component is a thing that can appear on your screen, like a window or a button. The
parent of all component classes is java.awt.Component. The Component class
embodies a screen presence. You can't have a vanilla Component, though; you can only
have an instance of one of its subclasses. (In fact, java.awt.Component is an
abstract class. See the sidebar in Chapter 7 for further detail on abstract classes.)

Although you can't instantiate Component directly, Component has several useful
subclasses. One group of these is the set of stand−alone widgets that let you interact with
your screen in stereotyped ways. There are many GUI widgets built in to java.awt.
These include Checkbox, Choice, List, Button, Label, and Scrollbar. In
addition, there are several Menu variants that don't extend Component directly, but also
provide useful widgets. Each of these widgets is pretty well able to handle its GUI
behavior — showing up, disappearing, allowing selections to be made, etc. In the event
delegation chapter, we will see how to use these GUI components to allow the user to
communicate with your application; for example, to have something smart happen when
a selection is made. (This involves customizing these widgets' event handlers.)

Another set of components are called Containers. These Components extend
java.awt.Container (which itself is an abstract class extending java.awt.Component.)
Containers are components that can have other components inside them. For example, a
java.awt.Window (which is a kind of component) can have a java.awt.Scrollbar.

In this chapter, we will confine ourselves to one simple component behavior: painting
itself. To do this, we will use a generic Component, called Canvas, that you can
instantiate. The java.awt.Canvas class doesn't do anything special, but you can
either use it as a generic component or extend it to get specialized behavior. We will
make a Canvas that paints itself with a special picture.

452 Chapter 15 Event−Driven Programming

Figure 15.7. Standard screen coordinates, showing the origin, directions of increasing
horizontal (x) and vertical (y) coordinates, and two other sample points.

15.4.3 Graphics

A java.awt.Graphics (sometimes called a “graphics context”) is a special kind of object
that knows how to make pictures appear. A Graphics uses a coordinate system to keep
track of locations within it. The origin of this coordinate system — the point (0,0) — is in
the upper left−hand corner. Moving right from this point involves increasing the first (x)
coordinate, so (100, 0) is 100 pixels to the right of the origin, along the top edge of the
Graphics.

[Footnote: A pixel, short for picture element, is the smallest visible unit on your
computer's screen. A higher resolution display is one that has more pixels in the same
amount of space, i.e., one with smaller pixels. Java Graphics are delineated in pixels.]

Moving down increases the second (y) coordinate, so (0,50) is 50 pixels below the top of
the Graphics, along its left−hand side. (100,50) is a point that is not on either the top or
left edge; it is 100 pixels to the right and 50 pixels down.

Each Graphics has methods such as drawLine, fillOval, and setColor that allow you to
create pictures. For example, if you had a Graphics named g,
g.fillOval(100,100,10,10) would make it display a 10−pixel by 10−pixel
circle with its upper left−hand corner at position 100, 100. If you called
g.setColor(Color.red) first, the circle would be red. A complete list of the
methods of a java.awt.Graphics, together with a brief description of each, can be found in
the java.awt.Graphics reference.

A Graphics is not the kind of object that you are likely to create or have hanging around.
You will probably never run into the Graphics associated with GUI widgets or containers.
However, each time that your Canvas needs to redisplay itself, it will be handed a
Graphics context with which to do that redisplaying. So there will be times when your
code will be given a Graphics to use.

15.4.4 The Story of paint

Painting (itself) is what a GUI component does when it becomes visible. For example, if
a window is (partially) covering a component and then the window is moved, the

Chapter 15 Event−Driven Programming 453

component needs to make itself look right again. Java takes care of automatically
determining that this should happen and asks the component to paint itself.

Every java.awt.Component has an event−driven paint method. This method does not say
when the component should be painted, nor why, nor on what. This method has nothing
to do with determining that painting is necessary. Instead, this method is the set of
instructions that describe how to paint the Component. It is the answer to the question,
“What should I do when it is time to paint myself (on the provided Graphics screen)?” It
is the job of whatever calls the paint method to determine whether and when the
Component needs to be painted.

The paint method of a Component is passed a Graphics object. This is the Graphics
which contains, among other things, the coordinate frame within which drawing on this
Component should take place. It also contains a variety of utilities that will make things
actually appear within the Component. Just as you don't have to determine when or
whether paint should be invoked, you don't need to provide the Graphics object. Like
magic, when paint is invoked, the Graphics object will be there.

Each paint method contains the specific instructions that that component needs to make
itself appear. For example, a Button's paint method makes the button label appear on the
button. A Window's paint method not only makes the Window appear, it also makes sure
that the paint method of each of the components contained in the Window gets called as
well.

When the paint method is invoked, it is equipped with a single argument, a Graphics. If
what the Component does to display itself is, for example, to draw shapes, this Graphics
(the argument passed in to the Component's paint method) is what actually does the
drawing.

Your job, when implementing a paint method, is to make use of this provided Graphics
(and any other information that the object may have) in order to make the correct picture
appear. You supply the instructions to be executed. To paint me, make a big red dot. Or,
to paint me, print my name. Or, to paint me, paint each of the Components that appear
inside me.

Suppose that you want to have your Component contain a rectangle in the upper
left−hand corner. A Graphics has a drawRect method which does just that. When your
component's paint method is called, it should ask whatever Graphics object is supplied
to it to drawRect(int x, int y, int width, int height).

[Footnote: drawRect takes four arguments: the upper left hand coordinates and the size
coordinates. All measurements are in pixels — tiny boxes that make up your screen —
and the origin — the point (0,0) — is in the upper left−hand corner of the component.
These are called “screen coordinates”. Graphics objects have lots of other drawing
methods, too. See the java.awt.Graphics documentation for a comprehensive

454 Chapter 15 Event−Driven Programming

http://java.sun.com/products/jdk/1.1/docs/api/java.awt.Graphics.html#_top_

listing.]

For example, if paint were called with a Graphics named g, the instructions might read

g.fillRect(0,0,20,20);

to draw a square in the upper left−hand corner of the Component. The whole method
would read

public void paint(Graphics g) {
 g.fillRect(0,0,20,20);
}

A Component's paint method is an event handler. This means that the Component's paint
method is the set of instructions describing the Component's response to a request to
redisplay itself. It triggers whenever Java finds that something has happened that requires
the component to redisplay itself.

15.4.5 Painting on Demand

When we say that paint is an event handler method, what we mean in part is that your
code doesn't call paint directly. Instead, paint is called automatically by the Java runtime
system any time the Component needs to redisplay itself. This could happen, for
example, if a window were covered up and then uncovered: when the uncovering event
occurs, the window needs to repaint itself. Each of the components, containers, and
widgets in java.awt has an event−driven paint method. Note, however, that there's no
Paintable interface; paint is a method of Component and is inherited by every class that
extends Component.

The paint method takes a Graphics context as an argument. You cannot, in general,
supply the appropriate Graphics context to a Component; but since you don't call
paint, you don't need to supply the Graphics. Instead, Java's behind the scenes
bookkeeping takes care of this. (Remember, paint(Graphics g) is used in
event−driven style; that is, it is called by Java, not by your program.)

Your code cannot call paint directly. It is an event handler method and it uses an event
queue; only the queue manager can call paint. But sometimes you will know that it is
necessary for a GUI object to repaint itself. For example, in the code above the image
animation needed to repaint itself each time the currentFrameIndex changed. Since
you can't call the component's event handler directly, each Component provides another
method, called repaint, that you can call. If you call the component's repaint method, it
will ask Java to send it a new paint event.

Chapter 15 Event−Driven Programming 455

If you do ever need to tell the system that you want your component to be painted, you
need to arrange for Java to provide the appropriate information to your class. You can do
this by calling the component's repaint method. Unlike paint, which takes a Graphics
as an argument, repaint takes no parameters. (This is good, because you don't
generally have a Graphics around to give paint. This is another thing that Java keeps
track of automatically.) You don't have to implement repaint;
java.awt.Component.repaint, which you will inherit, queues up a new
paint(Graphics g) request (even supplying the appropriate Graphics) behind the
scenes. Remember: You never call paint, and you never implement repaint. To cause a
painting to happen, call repaint; to explain how to paint your component, implement
(override) the paint(Graphics g) method — and don't worry about the Graphics, it will be
automatically supplied to you!

15.5 Events and Polymorphism

One advantage of using an event−driven style is that your code can focus on how to
respond to things that happen. It does not have to spend a lot of time figuring out whether
things happen or deciding what has happened and who should deal with it. (Of course,
event−driven code relies on an event dispatcher, which does have to deal with these
things, but often either one is available — as in the GUI case — or a fairly simple and
generic one will do.)

A second advantage of the event−driven style is that, when used in concert with an event
queue (as in Java's AWT), it separates the generator of the event (e.g., the window
motion) from the handler of the event (the component that is uncovered). This means that
these two pieces of the system can be designed independently. All they have to do is to
agree on the event protocol that they will use — in this case, repaint and paint(Graphics
g). How each one fulfills its side of the contract — how the component decides to paint
itself, for example — is something that the rest of the system doesn't have to worry about.

A corollary benefit, then, is that different kinds of components can handle the same event
in very different ways. We saw this early in this chapter where the same pair of events —
timeout and reset — were used to run both an alarm and an image animation. In these two
objects, the timeout event meant very different things. The alarm handled a timeout by
turning on its buzzer; the image animation switched to the next image each time a
timeout occurred.

The GUI painting system that we have described uses this polymorphism to great
advantage. When a component like a Canvas is asked to paint itself in a Graphics, it may
draw a simple picture using the Graphics supplied. When a widget like a Button is asked
to paint itself, it creates labeled region of the screen appropriate for clicking into. A
Checkbox may paint itself as a square, with or without an X in it depending on whether
the Checkbox is checked. A container such as a Window not only paints itself, it also
asks each of the components contained inside it to paint themselves. The Window doesn't
need to know anything about how these components appear; it simply asks them to paint

456 Chapter 15 Event−Driven Programming

themselves in the way that they know best.

Chapter 15 Event−Driven Programming 457

Chapter Summary

 By hiding the central control loop, we shift emphasis from explicit dispatch to
event handler methods.

•

 Event driven programming separates things that happen from how they're
handled.

•

 Each object is free to implement the same event handler in a different,
customized way.

•

 In Java's AWT, certain GUI events are automatically dispatched by the Java
runtime.

•

 The root of the GUI component hierarchy is java.awt.Component.
Although java.awt.Component is an abstract class, it has many useful
subclasses, including

 widgets such as Checkbox, Choice, List, Button, Label, and
Scrollbar.

♦

Containers, Components that can hold other Components.♦

Canvas, a generic Component that you can customize.♦

•

 Every java.awt.Component has a paint(Graphics g) method that is called
by Java when Java needs to make the Component (re)appear on the screen.

 By overriding or implementing a paint method, you are describing how
your custom component should handle requests to paint itself.

♦

 You don't generally call a component's paint method. (Among other
things, you don't have a Graphics to pass it.) If you want to redraw a GUI
component, you can call its repaint method.

♦

•

458 Chapter 15 Event−Driven Programming

Exercises

 Define a TimeoutResettable that simply prints to the Console whenever an event
happens. The message printed should differ depending on which event occurs.
Implement it in a purely event driven style, i.e., assuming that something else will
manage the event dispatching.

1.

 Describe a scenario in which an event occurs to the object in the previous
exercise. Explain the sequence of action.

2.

 Define a class that extends java.awt.Canvas and has an unfilled circle with
its upper left hand corner at 100, 100.

(Bonus) What happens if you make the Canvas very small? Can you modify your
class to keep the circle centered on the Canvas? You can use Canvas's getSize
method, which returns a java.awt.Dimension with directly manipulable
height and width fields.

3.

 Define a class that extends java.awt.Canvas and paints itself like a
black−and−white checkerboard. You may assume that the dimensions of the
Canvas are 400x400.

(Bonus) Make the checkerboard red and black.

4.

 Define a class that extends java.awt.Canvas and has two different painting
behaviors. (For example, it could paint a black circle or a red square.) This class
should also have a changeMe method. Each time its changeMe method is called,
it should redisplay itself using the other behavior (e.g., it should switch between a
black circle and a red square). Hook this up to a Timer (from Chapter 8).

5.

You can test your Canvases using the cs101.awt.DefaultFrame class included in the code
supplement to this book.

Chapter 15 Event−Driven Programming 459

460 Chapter 15 Event−Driven Programming

Chapter 16

 Event Delegation and java.awt

Chapter Overview

 How do I separate an entity's core behavior (model) from its on−screen
appearance (view)?

•

 How do intermediate (listener) objects couple together system components that
don't know about one another?

•

In the simple event model of the previous chapter, each visible component provides an
event handler method (e.g., paint) that is invoked every time that the appropriate event
is triggered (e.g., by uncovering a window or by an explicit call to repaint()). The
component doesn't (necessarily) have an always−active animacy (Thread); instead, it is
awakened — invoked by the event dispatcher instruction follower — whenever an
appropriate event occurs.

In the previous chapter, we saw how event driven programming focuses a system's design
on what to do when certain events happen. The mechanism that recognizes and
dispatches these events fades into the background. We saw how this approach is used to
implement painting in java.awt components. In that system, each Component handles its
own events. In this chapter, we will look at a more complicated two−layer model which
further separates the event producer from the event consumer. This mechanism, which
relies on an explicit listener registration protocol, is at the heart of the event handling
system in Java's AWT versions 1.1 and later.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

http://java.sun.com/products/JDK/CurrentRelease/api/Package-java.awt.html
mailto:ipij@mkp.com

The problem of GUI design is illustrative of larger design issues. The event−delegation
approach described in this chapter arises from our desire to separate what happens in the
GUI (such as clicking a button) from the behavior that this causes (such as playing a
song). To make this work, we connect GUI objects (such as Buttons) to application
objects (such as SongPlayers) indirectly, through special EventListener objects. The
EventListener records the appropriate connection between GUI events and application
behavior, keeping these details out of both GUI and application components. This allows
significant flexibility: a single application behavior may be invoked by many different
GUI events; one GUI event may give rise to many application behaviors; or the
relationship between GUI events and application behavior may be remapped by a running
program, for example.

This kind of indirect coupling through a Listener object is a useful technique in a wide
range of applications.

Objectives of this Chapter

16.1 Model/View: Separating GUI Behavior from
Application Behavior

In the previous chapter we explored event−driven programming as a way of focusing on
the important things that happen in a program. An event handler is a method that
responds to some important circumstance, or event. It answers the question, “What
should I do when xxx happens?” It shifts the emphasis from figuring out what has
happened and deciding what to do (the dispatcher) to the actual code that handles the
event, whenever it may arise. Event driven programming is the idea that an object simply
provides an event handler method — instructions to follow — and does not worry about
how or when those instructions are executed. Somehow, an instruction−follower will
invoke this method — and follow its instructions — when appropriate.

Java's AWT graphical user interface toolkit uses event−driven programming to
coordinate the display of GUI objects on your computer screen. Each
java.awt.Component implements its own paint(Graphics g) method, which supplies the
instructions for making that Component appear in the coordinate space described by g.
As in all event−driven programs, the event handler paint method does not worry about
when, why, or whether it is time to paint. When the paint method is invoked, it means
that the need for painting has arisen — the event has occurred — and the paint method's
execution simply responds to that event.

In AWT painting, the need−to−paint event happens to a particular Component. When a
need−to−paint event arises, AWT makes it clear who is responsible for handling that
event: the Component that needs to be painted. But there are many other kinds of events

462 Chapter 16 Event Delegation and java.awt

for which the question, “Who should handle this event?” does not have such an obvious
answer. This chapter is about more general mechanisms that let programmers answer that
question in a more flexible way, separating the Component to which the event happens
from the object that handles the happening.

In many cases, the appearance of a GUI object and its underlying behavior may actually
be implemented by two different Java Objects. For example, the GUI object that
implements a set of radio buttons may be a Panel containing a number of CheckBoxes.
This is called the view: what the mechanism looks like, its screen appearance. In addition,
when the appropriate buttons are pressed, a song may be played. This is called the model:
how the mechanism behaves. The view — in this case, the Panel — is responsible for
keeping track of the on−screen appearance of the CheckBoxes (with their help, of
course). The Panel need not be responsible for playing the song, though. The model,
which provides the song−playing behavior, may in fact be implemented by a different
object. Logically, we want to separate out the GUI appearance (and GUI behavior, e.g.,
buttons looking pressed or not pressed) from the underlying application behavior. Java's
AWT event delegation mechanism lets us do just that.

[Footnote: The event delegation mechanism described in this chapter is used in Java's
AWT version 1.1 and later and also in the Java Swing toolkit. In Java's AWT version 1.0,
all event handling was done using a system closer to that of chapter 15.]

Figure 16.1. Dispatching Events: A fully general scenario.

16.1.1 The Event Queue, Revisited

In the previous chapter, we saw that we can separate the generator of an event from the
actual invocation of an event handler through the use of an event queue. The event queue
is a place where an event producer can “drop off” the information that an event had
occurred. For example, code can call a Component's repaint() method. This adds a
painting request to the event queue. Paint requests can also get added to the queue by
screen events, such as a Window moving to uncover a Component or a new Window
being asked to show(). Inside the queue, it doesn't matter how the event got added. A
separate active event dispatcher looks at the requests in the queue and figures out which

Chapter 16 Event Delegation and java.awt 463

event handlers need to be called when. The event dispatcher picks up an event (or, in the
case of repaint requests, perhaps several requests) and invokes the appropriate method
(e.g., paint(Graphics g)).

In the case of painting, you can imagine that there is one event queue per Component.
The dispatcher doesn't need to figure out what code to call; all of the requests in that
queue are for the associated Component. When a need−to−paint request arises, Java
ensures that that Component's paint(Graphics) method is called. The Component doesn't
have to do anything more than provide a (possibly inherited) implementation for this
method.

All GUI events — not just painting — happen to particular Components. The mouse is
clicked inside a particular Component. Only one Component at a time can be listening to
the keyboard. (Being the Component that is listening to the keyboard is called “having
the focus.”) So when an event occurs, it will still get added to the queue belonging to the
Component with which it is associated.

But suppose that we want to separate even event ownership from the responsibility for
handling the event. Suppose, for example, that clicking a radio button (GUI Component)
causes another object — a SongPlayer — to play a song. If responsibility for handling the
event doesn't necessarily belong to the Component — if we are separating the
Component view from a distinct Object implementing the model — the event queue's
dispatcher needs to figure out who to notify that the event has occurred. We need a
mechanism for associating the events that happen (and the objects to which they happen)
with interested parties that are willing to handle those events. We call these interested
parties listeners. The system by which a separate event−handling object listens for events
that occur to another (GUI Component) object is sometimes called event delegation.

Java solves the “who to notify” problem by introducing the idea of listener registration.
You can think of this as being something like subscribing to a newspaper clipping service
or personalized online news service. When you subscribe to such a service, you give the
service a list of topics that you're interested in. This is registering your interest with the
event queue, or listening. The service maintains a list of subscribers along with their
interests. These are the registered listeners. Each time that a new article comes in, it is
added to the pile of clippings to be considered. This is putting an event into the queue. An
employee of the clipping service picks up a clipping (typically the oldest one) and checks
to see who might be interested. If the article matches your interests, the clipping service
sends you a copy. This is dispatching to the event handler methods.

Events — such as mouse clicks or being uncovered when a Window moves — still
happen to individual Components. But — for many such GUI events — each
java.awt.Component has its own event queue that can dispatch to the appropriate
registered event handlers. These event handlers need to know about and register with the
Component whose events they want to listen for; they need to tell the event queue which
events they are interested in handling. The Component maintains a list of listeners who

464 Chapter 16 Event Delegation and java.awt

will handle its events.

Registering a listener is like leaving a (specialized) request with the clipping service: If
any articles about Indonesian coffee come, please send them to Working Joe, and if any
mouse motion events occur, please send them to the mouse motion listener that's waiting
for them.

16.2 Reading What the User Types: An Example

Imagine that we want to have the user type her name into a GUI widget. When she does
so, we will print a friendly greeting. This section walks through this example, providing a
pragmatic introduction to the actual AWT mechanisms required to implement event
delegation.

The code that follows assumes that it appears in a method within a class within a file that
imports cs101.awt.DefaultFrame, java.awt.TextField, and java.awt.event.ActionListener,
and java.awt.event.ActionEvent. In general in this chapter we will omit package names
unless they are needed for clarity.

16.2.1 Setting Up a User Interaction

The first thing that we need to do is to create a place where the user can type her name.
Java provides an AWT widget that is useful for just such occasions, a TextField.

TextField nameField = new TextField(“Type your name here”);

This line creates a TextField, a rectangular box containing text. The constructor argument
is the text initially displayed in this box.

nameField.setEditable(true); // Make it possible for the user
 // to type into the TextField.
nameField.selectAll(); // Highlight the original text so that
 // what the user types replaces it.

The first of these lines makes it possible for the user to type in the TextField. The second
highlights all of the text in the TextField, so that what the user types will replace the text
displayed there.

Chapter 16 Event Delegation and java.awt 465

new DefaultFrame(nameField).init(); // Create a Frame
 around the TextField.

Finally, this line creates a cs101.awt.DefaultFrame, an awt Window in which a single
Component can be displayed. DefaultFrame is a restricted kind of Frame, but has the
advantage that it takes care of certain housekeeping details for you. DefaultFrame's init()
method actually makes the window appear on the screen. See the sidebar on
DefaultFrame for details.

Now suppose that the user types her name into the TextField box, replacing the
highlighted text previously displayed. If the user ends her name by typing the return key,
this causes an action event to be registered on the TextField. In other words, something
has happened and we are ready to invoke the appropriate event handler.

Now, we are ready to print our greeting. For example, we might say

Console.println(“Hello, ” + reference_to_nameText.getText());

Each TextField has a getText() method that returns the String displayed in the TextField
at the time of the getText() invocation. So, if we execute code along these lines, the text

Hello, Galadriel

should appear on the Java Console. There are, of course, a few issues:

 Where does this code appear? That is, who is handling the event, and in what
method?

1.

466 Chapter 16 Event Delegation and java.awt

 How does that event handler access the TextField called nameText (in order to
ask it to getText())?

2.

This is where Java's event delegation system comes in.

cs101.awt.DefaultFrame

A cs101.awt.DefaultFrame is a cs101 utility provided to make it easy to put up a
window containing a single Component. The DefaultFrame takes care of sizing,
activating the window's close box, causing the window to appear on the screen, etc.

If c is a Java component, it can be made to appear on the screen using

new cs101.awt.DefaultFrame(c).init();
// Create a Frame around the component.

The first half of this statement is an object construction expression that creates a
DefaultFrame around c. The second half of the statement invokes this
DefaultFrame's init() method, which is useful for its side effect: it displays
Component inside the DefaultFrame, i.e., in its own window. Of course, you can
use a more complex version of this code that names the new DefaultFrame,
allowing you to use it elsewhere in your program, if you wish:

cs101.awt.DefaultFrame frame = new cs101.awt.DefaultFrame(c);
frame.init();
// Create a Frame around the component.

The class cs101.awt.DefaultFrame extends java.awt.Frame, documented in the
AWT Quick Reference appendix to this book. For the complete code implementing
cs101.awt.DefaultFrame — which is straightforward — see the online supplement
to this book.

16.2.2 Listening for the Event

The event generated by Galadriel's return is associated with the TextField called
nameField. That TextField is like a clipping service, and a new item of potential interest
— the action taken by Galadriel — has just arrived. Now, Java needs to determine who is
interested in nameField's action events.

Who might be interested? There is a special interface, called ActionListener, that
describes the contract to be implemented by any object interested in handling action
events. Here is the definition of the ActionListener interface:

Chapter 16 Event Delegation and java.awt 467

public interface ActionListener extends EventListener {
 public void actionPerformed(ActionEvent ae);
}

The actionPerformed method is an event handler, so its implementation will answer the
question, “What should I do when an action is performed?” In this case, the answer is to
print out the text currently displayed by the TextField in which Galadriel typed her name.
The object whose actionPerformed method is invoked is not responsible for deciding
whether, when, or why the actionPerformed method should be called. It is only
responsible for behaving appropriately when the event handler method is called.

We can build an action listener by providing a class that implements this interface. The
implementation of actionPerformed in this class is an answer to the question, “What
should I do when an action is performed?”

public class FieldHandler implements ActionListener {

 private TextField whichText;

 public FieldHandler(TextField whichTextToHandle) {
 this.whichText = whichTextToHandle;
 }

 public void actionPerformed(ActionEvent ae) {
 Console.println(“Hello, ” + this.whichText.getText());
 }
}

This class actually keeps track of which TextField it wants to associate itself with. We
can create a particular FieldHandler associated with nameText using the construction
expression:

new FieldHandler(nameText)

Now, when this FieldHandler's actionPerformed method is invoked — when the action
happens — the FieldHandler will use nameText's getText() method to print a greeting to
Galadriel.

Of course, we might want to hang on to that FieldHandler once we've created it. It will
come in handy in another few paragraphs.

468 Chapter 16 Event Delegation and java.awt

16.2.3 Registering Listeners

So far, so good. However, we haven't specified how the FieldHandler gets notified
about the event in the first place. Of course, part of the story is that Java's event manager
identifies that a carriage return has been hit in the TextField and generates an appropriate
ActionEvent. But this event happens to the TextField; how does the
FieldHandler get hold of it?

The answer is that Java needs to be notified that the FieldHandler is interested in this
TextField's action events. To return to our earlier analogy, the FieldHandler needs to
subscribe to the TextField's action event clipping service.

This is accomplished with the TextField's addActionListener method, which
takes an ActionListener as an argument. The addActionListener method tells
Java that the ActionListener argument addActionListener is wants to know
about any ActionEvents that occur to this TextField. For example,

ActionListener nameHandler = new FieldHandler(nameText);
nameText.addActionListener(nameHandler);

[Footnote: or simply nameText.addActionListener(new
FieldHandler(nameText));]

registers the actionListener called nameHandler as a listener for any
ActionEvents that occur to nameText.

Now, when Galadriel finishes typing, an action event will not only be generated but also
forwarded to nameHandler to handle.

16.2.4 Recap

The code that creates this situation is distributed over the paragraphs above. Here is the
entire setup code. It might, for example, appear in a main method or in the constructor of
an entity that provided the name−greeting behavior described at the beginning of this
section.

Chapter 16 Event Delegation and java.awt 469

// Set up the TextField.
TextField nameField = new TextField(“Type your name here”);
nameField.setEditable(true); // Allows user typing.
nameField.selectAll(); // Highlights current text.

// Now create and register the ActionListener.
ActionListener nameHandler = new FieldHandler(nameText);
nameText.addActionListener(nameHandler);

// Finally, create a Frame around the TextField.
new DefaultFrame(nameField);

The only additional code required is the FieldHandler definition:

public class FieldHandler implements ActionListener {

 private TextField whichText;

 public FieldHandler(TextField whichTextToHandle) {
 this.whichText = whichTextToHandle;
 }

 public void actionPerformed(ActionEvent ae) {
 Console.println(“Hello, ” + this.whichText.getText());
 }
}

16.3 Specialized Event Objects

In Galadriel's example, we encountered an object whose type was ActionEvent. It
appears as a parameter in the actionPerformed method of ActionListener. In that
example, we blithely ignored the ActionEvent — as one often does in an action
Performed method — but this begs the question of what that object is and why it appears.
In this section, we'll look at ActionEvent and other similar event objects, and explore
cases in which these event objects have important roles to play.

In the previous chapter, we looked at an event handler method called paint. That method
needed to be supplied with a fairly specific kind of object, a Graphics, before it could do
anything. In contrast, other handler methods of the previous chapter — such as
handeTimeout() and handleReset() — needed no arguments at all. The event handlers in
this chapter do need some information, but that information is of a fairly generic (though
specializable) type. The information supplied to one of these AWT event handlers is a
special Java object called an AWTEvent. Such an object inherits from
java.awt.AWTEvent (which is itself a java.util.EventObject). The
subclasses of java.awt.AWTEvent live in a separate package, called

470 Chapter 16 Event Delegation and java.awt

java.awt.event.

In a general GUI, what kinds of things can happen? The mouse can be moved and clicked
and dragged, the keys can be pressed, windows can be closed, menu items can be
selected, text can be entered, and many, many more things can happen. A listing of the
major event types used in this book may be found in the AWT Quick Reference appendix
in the AWT Events segment. For example, a mouse click generates a MouseEvent,
while clicking in the close box of a window generates a WindowEvent and clicking a
button (or typing return in a text field) causes an ActionEvent.

Some kinds of events, like ActionEvents, are notable mostly for happening. For
example, when a Button is clicked, an ActionEvent is generated. If you know what
Button was clicked to generate the ActionEvent, you really know everything worth
knowing about the ActionEvent. (If you don't know what Button was clicked, you can
find out by asking the ActionEvent; see below.) An ActionEvent is also generated
when the return key is typed in a TextField (as we have seen), indicating that the text is
complete. In this case, you need to know both which TextField and, perhaps, what text
was typed. But once you know what TextField generated the ActionEvent, you can ask
the TextField for its text. So the internal structure of an ActionEvent is not likely to be of
much interest.

Different kinds of events have methods that provide access to the different kinds of
information that you'd want if you were dealing with a mouse click or a window close.
These event methods are summarized in the AWT Events segment of the appendix AWT
Quick Reference. For example, a MouseEvent has a few methods that are especially
worth noting. If the MouseEvent is labeled mickey, then

mickey.getX() returns an int specifying the mouse's location at the time of
the MouseEvent (in pixels starting at the upper left−hand corner of mickey's
screen−space). .

•

mickey.getY() similarly returns mickey's y coordinate.•

 If you prefer to get both coordinates at once, you can retrieve a
java.awt.Point object using mickey.getPoint().

•

Every AWTEvent also has a getSource() method. This method returns the Object to
whom the event happened. For example, we could have replaced the actionPerformed
method of our FieldHandler class with the definition:

Chapter 16 Event Delegation and java.awt 471

public void actionPerformed(ActionEvent ae) {
 TextField theField = (TextField) ae.getSource();
 Console.println(“Hello, ” + theField.getText());
}

This text uses the TextField that is the source of the action event, rather than the
TextField that is handed to the FieldHandler constructor, as the target of the getText()
method.

[Footnote: In this case, we could simply eliminate the constructor, making the
FieldHandler definition look like this:

public class FieldHandler implements ActionListener {
 public void actionPerformed(ActionEvent ae) {
 TextField theField = (TextField) ae.getSource();
 Console.println(“Hello, ” + theField.getText());
 }
}

]

Some AWTEvents, such as MouseEvent, are ComponentEvents. Every
ComponentEvent also has a getComponent() method that returns the same thing
as its getSource() method, but typed as a Component.

A variety of useful event types and their methods are documented in the AWT Events
segment of the AWT Quick Reference appendix.

16.4 Listeners and Adapters: A Pragmatic Detail

Every AWTEvent type has an associated Listener type.

[Footnote: Except PaintEvent, which uses the mechanism described in the previous
chapter rather than the listener registration system described here.]]

This means that when the AWT event occurs — the mouse is clicked or the key is
pressed, etc. — there's a type of object equipped to handle that event. (Actually,
MouseEvent is an exception, as it has two associated listener types: MouseListener,
which handles clicks, entry and exit, presses and releases, and MouseMotionListener,
which handles drags and moves. Most event types only have one Listener.)

The ActionListener defined above will do the trick quite nicely for our
TextField. The ActionListener interface only had a single method to implement.

472 Chapter 16 Event Delegation and java.awt

Other listener interfaces are more complex, though. For example, the MouseListener
interface defines five methods:

public interface MouseListener extends EventListener {

 public void mouseClicked(MouseEvent mickey);
 public void mouseEntered(MouseEvent mickey);
 public void mouseExited(MouseEvent mickey);
 public void mousePressed(MouseEvent mickey);
 public void mouseReleased(MouseEvent mickey);
}

If you want to be able to respond to mouse clicks, you will need to implement a class that
has an appropriate mouseClicked method. But the MouseMotionListener interface
specifies a contract with five distinct methods. If clicks are the only kind of MouseEvent
that you want to respond to, it would be rather annoying to have to implement each of the
other four methods just to be able to write the one (mouseClicked) that we need. Our
class definition might say:

public class MouseHandler implements MouseListener {

 public void mouseClicked(MouseEvent mickey) {
 // Interesting code goes here...
 }

 public void mouseEntered(MouseEvent mickey) {}
 public void mouseExited(MouseEvent mickey) {}
 public void mousePressed(MouseEvent mickey) {}
 public void mouseReleased(MouseEvent mickey) {}
}

Not very concise or beautiful, but necessary if we are to implement the interface directly.
After all, an interface is a contract and implementing the interface means fulfilling the
whole contract, not just a part of it.

To avoid this ugliness, java.awt.event gives us a more concise way of saying the
same thing. There is a class called MouseAdapter that implements
MouseListener, providing all of the (non−interesting but also non−abstract) method
bodies required. We can just extend MouseAdapter in our class, eliminating the
need to implement all of the extra (extraneous) methods:

Chapter 16 Event Delegation and java.awt 473

public class MouseHandler extends MouseAdapter {

 public void mouseClicked(MouseEvent mickey) {
 // Overrides MouseAdapter's mouseClicked method.
 // Interesting code goes here...
 }
}

Much nicer!

Each of the listener interfaces that declares more than one method has a corresponding
adapter class. These are listed in the AWT Listeners and Adapters segment of the AWT
Quick Reference appendix.

16.5 Inner Class Niceties

Let's return to the TextField handler class from the Galadriel example, above. There are
still some improvements in functionality that we can make.

We might, for example, make our own class — our own specialized TextField — that
is born with its own FieldHandler:

public class HandledTextField extends TextField {

 public HandledTextField() {
 ActionListener nameHandler = new FieldHandler(nameText);
 nameText.addActionListener(nameHandler);
 }
}

Now each HandledTextField is born with its own FieldHandler. This is similar to
AnimateObject's creating its own AnimatorThread, rather than expecting someone else to
create the AnimatorThread on its behalf.

Using inner classes,

[Footnote: See chapter 12 for details.]

we can make this innovation do even more work for us. Inner classes are a relatively
advanced feature of Java, and they add only to the aesthetics of this program, not to its
functionality. They do provide a little bit more protection for code from unanticipated
use, a feature that we can exploit. After all, a FieldHandler as we have defined it is not
really of much general interest. We can embed the definition of that class inside the
HandledTextField class definition, hiding it from the rest of the world and simultaneously

474 Chapter 16 Event Delegation and java.awt

taking advantage of inner class's privileged access to their containing instance's state.

Using inner classes, we can write:

public class HandledTextField extends TextField {

 public HandledTextField() {
 ActionListener nameHandler = new FieldHandler();
 nameText.addActionListener(nameHandler);
 }

 private class FieldHandler implements ActionListener {

 public void actionPerformed(ActionEvent ae) {
 Console.println(“Hello, ”
 + HandledTextField.this.getText());
 }
 }
}

Since FieldHandler is defined inside HandledTextField, it has access to its
containing instance directly (through HandledTextField.this), and we can
eliminate the constructor argument (and the constructor itself!) for FieldHandler.
Pretty neat, huh?

Chapter 16 Event Delegation and java.awt 475

Chapter Summary

 EventListeners are interfaces promising particular sets of event handler methods.
There are Listeners for groups of related AWT event types, such as mouse motion
events, in the package java.awt.event.

•

 That package also includes adapter classes to make implementing these interfaces
easier.

•

 Listeners are connected to AWT components using a component's
addEventClassListener() (registration) method.

•

java.awt.AWTEvent and its subclasses are data repositories that record
relevant information about individual (GUI) events.

•

 Each event handler method takes one of these Event objects as an argument, in
much the same way that paint() requires a Graphics. Like paint(), the
event handlers of an EventListener are called by the system, not by your code.

•

 Inner classes provide a nice way of packaging the definitions of subsidiary
classes (such as EventListeners) inside other class definitions.

•

476 Chapter 16 Event Delegation and java.awt

Exercises

 Define a class that implements java.awt.event.MouseListener and extends
the mouseClicked(MouseEvent) method by printing the coordinates of
the point on which the mouse had clicked. You may also want to make use of the
class java.awt.event.MouseAdapter. (Bonus: also print the components
of the previous mouse click.)

1.

 Now define a class that extends java.awt.Canvas and sends its mouse
events to your MouseListener.

2.

 Define a class that implements java.awt.event.WindowListener and
extends the windowClosing()method by printing “Nah, nah, you
can't kill me!” (Alternately, you can do the potentially more useful thing
and (1) call the object's dispose() method and (2) call System.exit(0).)
What class do you think would be useful when implementing
WindowListener?

3.

Define a class that extends java.awt.Canvas and looks like a (black and
white) Japanese flag, i.e., it has a circle at (100,100). Make the circle change
color when the mouse is over your Canvas. (Hint: mouse enter, mouse leave.)

4.

Chapter 16 Event Delegation and java.awt 477

478 Chapter 16 Event Delegation and java.awt

Part 5

Systems of Objects

480 Part 5 Systems of Objects

Chapter 17

 Models of Communities

This chapter has not yet been written.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

482 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 483

xxx

484 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 485

xxx

486 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 487

xxx

488 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 489

xxx

490 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 491

xxx

492 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 493

xxx

494 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 495

xxx

496 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 497

xxx

498 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 499

xxx

500 Chapter 17 Models of Communities

xxx

Chapter 17 Models of Communities 501

xxx

502 Chapter 17 Models of Communities

Chapter 18

 Interfaces and Protocols:
Gluing Things Together

This chapter has not yet been written.

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

504 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 505

xxx

506 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 507

xxx

508 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 509

xxx

510 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 511

xxx

512 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 513

xxx

514 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 515

xxx

516 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 517

xxx

518 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 519

xxx

520 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 521

xxx

522 Chapter 18 Interfaces and Protocols: Gluing Things Together

xxx

Chapter 18 Interfaces and Protocols: Gluing Things Together 523

xxx

524 Chapter 18 Interfaces and Protocols: Gluing Things Together

Chapter 19

 Client−Server Interaction Patterns

Chapter Overview

 Who is responsible for getting something from one entity to another?•

 What tradeoffs are involved in this decision?•

This chapter concerns the ways in which responsibility for (information) transfer can be
allocated between the provider and the recipient and the implications of these design
decisions. When the service provider takes responsibility for the transfer, it maintains
control of its own workload but may overwhelm the recipient. When the recipient
initiates the request, the dual situation is in effect. The participants in this relationship are
called servers and clients, and client/server architectures are common in modern software
design.

Objectives of this Chapter

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

19.1 What Is a Client−Server Interaction?

Sometimes, one (computational) entity has something that another (computational) entity
needs. For example, a baker may have cookies, and you may be hungry. In this case, the
entity that has the thing—the baker—is called a server and the entity that needs the
thing—you—is called a client. Although these terms are often used without further
explanation, you can see from this description that a client and a server are defined with
respect to some (computational) need, or service (like a cookie).

In the computational world, a server is often something that provides a particular service
to other computers connected by a network. For example, it is common for an
organization to have a lot of disks on which its members' information is stored, and to
have a single machine responsible for providing access to this storage space. This
machine is called a disk server or a file server. Another machine in the same organization
might control the public html access for that organization's world−wide web pages. That
machine would be the organization's web server. Yet another machine might be in charge
of electronic mail for the organization: the mail server.

In each of these cases, the service is described by what is provided. But it is also
important to characterize how the service is provided, in what form, when, by whom, and
to whom, whether it is provided once or repeatedly, whether it is provided to one client at
a time or to many clients simultaneously, and who is responsible for initiating the
transaction. For example, an important message may be transmitted by certified mail, or
it may be communicated by announcement over a public address system. These two
services may communicate the same information, but they do so in dramatically different
ways.

19.2 Postal Services: An Example

In this section, we'll look more closely at a particular real−world, non−computational
service: the postal system. In doing so, we will see that most of the major properties of
client−server interactions are present in familiar transactions.

The main service provided by the postal system is the transmission of physical letters and
packages. In this sense, it is perhaps the original mail server. Its clients are the people
who send and receive mail through the system. The post office (or, more generally, the
postal system) is the server. It may be obvious that the recipient of mail is a client of the
postal system: A recipient gets mail delivery from the postal system. Perhaps less
intuitively, the sender of the mail is also a client (of another service of) the postal system:
the sender relies on the post office to provide the service of transmitting the letter. We
will return to this point later.

526 Chapter 19 Client−Server Interaction Patterns

Figure 19.1. The post office provides parcel transmission and parcel delivery services. Its
clients are senders and recipients, respectively. The post office is a server providing the

service of transmission of packages.

This example is actually quite rich, illustrating several points about service providers.

19.2.1 A Server Can Provide a Variety of Services

We have already seen two interrelated services that the postal system provides: mail
transmission (to mail senders) and mail delivery (to mail recipients).

Actually, each of these is itself an abstraction of several different services. For example,
letter transmission is a somewhat different service than parcel transmission. The post
office charges different rates depending on the weight and size of the item to be
delivered. Similarly, the postal system provides multiple qualities of service for similar
items. A letter can be sent air mail or surface mail, overnight or second day or standard
delivery. A parcel can be sent first class or book rate. Each of these services is a
specialized form of mail transmission, with different costs, time behaviors, and
guarantees. All can be described as the same general mail transmission service, but each
has slightly different behavior.

Some service specializations don't fit neatly under the same abstraction. For example, a
letter can be sent certified; a return receipt can be requested. Requesting a return receipt
even changes the contract between the client — the mail sender — and the postal system
so that their interaction pattern is different. In traditional mail transmission, the client
gives the item to the post office and the interaction ends. (Of course, the post office is
still obliged to carry out its end of the deal, delivery.) When a return receipt is requested,
the transaction does not end here. Instead, delivery involves the post office's obtaining a
signature from the recipient. This signature needs to be transmitted back to the sender;
only then is the original transmission service complete. This amounts to the postal
equivalent of a callback. (See the chapter on Intelligent Objects.)

The same server that provides these transmission and delivery services — the post office
— also provides a number of other services, some of which may not even seem related.
For example, the United States Postal Service sells stamps and money orders. By special

Chapter 19 Client−Server Interaction Patterns 527

arrangement (i.e., the rental of a post office box) it will hold your mail for you. Some
post offices will even provide you with a passport. This last service is one provided by
the post office acting on behalf of the Passport Agency.

When we talk about a server, then, it is important to distinguish what service that server
is providing. In general, it is impossible to talk about a client or server without (at least
implicitly) referring to the service provided.

19.2.2 You Can Have More Than One Provider of a Given
Service

Among the services provided by the post office is the selling of money orders. But if you
want to transmit money through the mail, you can also do so using a check. The check is
a service provided by a bank, not by the postal system. So, for sending money through
the mail, you can turn to a variety of service providers. Each will have its own set of
properties: cheap or expensive, secure or less so, available on demand or only during
certain hours, etc.

Figure 19.2. Multiple servers may provide similar services. Both the post office and DHL
provide parcel transmission services, though these services vary in cost, guarantees of

timeliness, and other properties.

Even considering only the delivery service that is the postal system's “core” service, there
are still alternative providers. In the United States, package and letter delivery is provided
by United Parcel Service, Federal Express, DHL, and many other vendors. Each of these
service providers — servers — has a different performance profile. For example, some of
these parcel delivery servers are faster, provide “better” service, include a variety of
guarantees, cost more or less, etc. At different times, you may wish to select a particular
server because its properties best match your needs. But even when multiple servers
provide the same (or similar) services, any one service instance — such as sending one
particular parcel — is likely to go through only one provider of a particular service. For
example, when you mail your mother's birthday present, you will pick one carrier to
deliver it.

528 Chapter 19 Client−Server Interaction Patterns

19.2.3 Services Can Be Layered

We have seen that the post office provides both transmission and delivery services. These
two services together can be used as the basis for other service models.

Figure 19.3. Layered Services. The mail order company provides the shirt service to the
purchaser by means of the post office delivery system. The solid arrow shows the shirt

procurement service, of which the mail order company is the server and the purchaser the
client. The dotted arrows show the parcel shipping and parcel delivery services, of which

the post office is the server and the mail order company and purchaser are the clients,
respectively. The shirt service is implemented in terms of the parcel shipping and

delivery services.

Consider a mail order company, such as a clothing vendor. If I want to buy a Hawaiian
shirt, I can order it from the mail order company. The company plays the role of the
server and I play the role of the client in this shirt−procurement transaction.

But the clothing vendor is not in the business of shipping. How does the clothing vendor
get the shirt to me? One answer is that the clothing vendor may use the post office (or
some other parcel delivery service) to ship the shirt. In this case, shirt−procurement is
layered on top of parcel delivery, i.e, relies on parcel delivery to accomplish the
transaction.

Real services often work this way. In fact, network services — the way that one computer
communicates with another — involve many layers of services. When we look more
closely at network services in chapter 21, we will examine only the highest levels of these
services. We will use network transmission to build still more sophisticated services —
such as a web server or a chat program — in exactly the same way that the mail order
company relies on the postal service to deliver its shirt.

19.2.4 Roles Are Relative to a Service

We have seen how a single server can provide many different services (as the post office
does) and that a single service may be provided by many different servers (like the
various parcel delivery servers). We have also seen how layering makes it possible for

Chapter 19 Client−Server Interaction Patterns 529

one service to be built out of others. Each of these observations provides further
illustration that the role “server” (or “client”) is not an absolute one, but is meaningful
only relative to a particular service.

We can't, for example, properly say that the post office is a server. We have to specify
what service the post office is providing to whom. Of course, we sometimes skip this
information when we think that it is obvious from context. But properly, every server is
the server of a particular service interaction; every client is a client with respect to a
service interaction.

This is particularly important when we're talking about sophisticated interactions in
which a single entity can be simultaneously a client and a server. (Not of the same service
interaction, of course.) So, for example:

 The mail order company is simultaneously the server of “shirt purchasing” (I'm
the client) and the client of the post office's delivery service.

•

 In most standard retail transactions, the retailer is simultaneously the client of the
wholesaler (who sells the retailer the goods) and the server to the general public
(like me).

•

 Many interactions are two−way, like barter. For example, one farmer may supply
eggs to a second; the second may provide the first with milk. Each farmer is a
service provider (server) as well as a service consumer (client).

•

Note that in any relationship, an entity can either be a client or a server of a particular
service instance, but not both.

In computational systems, we typically reserve the term server for ongoing service
providers, i.e., persistent entities that can be repeatedly called upon to provide services.
That is, servers are full−blown computational entities, not simply program segments.

19.3 Implementing Client−Server Interactions

As we have seen, a client−server interaction is one in which the server has something at
the beginning and the client has it at the end. This “thing” might be quite abstract —
permission to access some data, for example, or the property of being subscribed to a
mailing list — but the idea is that the client wants it and the server can provide it.

In this section we will to focus on the question of who initiates the service and the
implications of this decision for client−server interactions. There are many different
services provided by many different servers, and many different mechanisms to support
these services. These include simple procedure call, the use of channels to transmit
requests, even aspects of event−driven programming. The issue of who takes
responsibility for service initiation exists no matter what service mechanism is used to

530 Chapter 19 Client−Server Interaction Patterns

implement the interaction, and the tradeoffs described here apply to each of these
implementations as well.

19.3.1 Client Pull

If a client needs something (or some service) from a server, perhaps the easiest way for
this transfer to happen is for the client to go and get — or pull — the thing from the
server. We do this all the time. For example, this is what happens when we go to the
grocery store.

 The client requests the service as it is needed.•

 The server handles each request as it comes in.•

The following icon represents a client pull client: In this icon, information flows

from right to left. The client (the circle) initiates the transfer of information, requesting it
from the server and retrieving it. Here is a client pulling from a (passive) server:

Getter methods are very simple versions of client pull. In a getter method, one entity asks
another for something; the method return completes the pull request. When direct method
invocation is not available — as when communicating over a channel, or network — a
pull request usually consists of two separate messages: one from the client, requesting the
service, and one from the server, completing it.

Figure 19.4. A client pull interaction: I get what I need from the grocery store. Vertical
lines represent computations that happen within an entity. Horizontal lines represent

communication between entities. When I ask the grocery store for something, the grocery
store gives it to me.

19.3.1.1 Locating the Server

In order for a client pull interaction to work, the client must know where to find the
server. This can be accomplished either by telling the client about the server when the
client is created or by providing a standard place to look. For example, I might first ask
the phonebook where the grocery store is, then get what I need from the grocery store.
This interaction involves two separate client pulls and is depicted in the next figure.
Structurally, this is the way that computers locate each other on the internet.

Chapter 19 Client−Server Interaction Patterns 531

Figure 19.5. First I (client pull) get the grocery store's location from the phone book, then
I (client pull) get the food I need from the grocery store.

19.3.1.2 Client Pull Tradeoffs

There are many advantages to client pull. The server doesn't have to do anything unless a
request is pending. The client gets only what it needs, when it needs it. The client
exercises control over the interaction, so the interaction (theoretically) happens when and
where the client is best able to make use of the service.

On the other hand, there are disadvantages, too.

 The burden is on the client. (You have to go to the grocery store. Sometimes, you
may miss out on a special because you get to the store at the wrong time.)

•

 The server may be deluged with requests and unable to keep up. (The grocery
store may run out of something.)

•

 The network may be full of requests, since each client is sending these requests
separately. (The check−out line may be long.)

•

 In general, more energy will be expended. For example, there's likely to be a lot
more (network) traffic. (Each client arrives in his/her own car. Sometimes there
are traffic jams in the parking lot.)

•

 The server's load may be patchy and unpredictable — too busy one moment,
unused the next — making inefficient use of the machine and its resources.
(Adequate inventory and staffing levels may be hard to identify, making the
grocery store an inefficient business.)

•

Client pull works well when client requests are highly variable but overall not too great a
load on the server. It allows each client to do its grocery shopping precisely when it needs
to. When it doesn't work, though, the grocery store can be quite a mess!

532 Chapter 19 Client−Server Interaction Patterns

19.3.2 Server Push

An alternate architecture that addresses some of these problems is for the server to take
initiative. In this case, it can simply deliver — or push — the information to the client
when it is ready. This is sort of like the fruit−of−the−month club. Every month, the
fruit−of−the−month club delivers a box of fresh, ripe fruit to your house.

Figure 19.6. The fruit−of−the−month club delivers a box of fruit to me each month,
without my having to do anything. This is server push.

In direct method invocation, setter methods are server pushes. Although these methods
technically complete with a return, no value is returned; in a put, only one−way
communication is necessary. In channel− or network−based interactions, a push is often
implemented as a single communication.

We can represent a server push server with the icon and a server push interaction

with a (passive) client with the icon . Again, information flows from left to right.

In this case, however, the entity with the information initiates the service.

19.3.2.1 Registering with the Server

Before the fruit−of−the−month club can provide me with regular deliveries, however, I
may need to register my interest with the club. This is often done as a one−shot
communication that precedes the regular (server push) delivery. Many subscription
services — like the fruit−of−the−month club, magazine subscriptions, or other periodic
deliveries — require a registration before the recurrent server push can begin.

19.3.2.2 Server Push Tradeoffs

There are numerous advantages to server push approaches:

 The server gets to control who gets what when. This means that it can manage its
resources and keep its load even (or at least predictable): clients with names A−G
this week, H−M next; oranges this month because they're in good supply.

•

 If the server is supplying multiple clients with the same — or similar —
information, there may be economies of scale. For example, the server may only
have to package up the information once to send to multiple clients.

•

 The client doesn't have to do anything to make this happen. The service just
shows up whenever the server thinks it appropriate.

•

Chapter 19 Client−Server Interaction Patterns 533

But this model doesn't always work perfectly, either. Why not? Let's consider what can
go wrong:

 Deliveries might come at a bad time. Imagine that a whole month's shipment of
fruit arrives the day after you've left town for a week. By the time you get back,
the fruit will have spoiled. This happens in computational systems, for example,
when the server goes too fast for the client, and the client has to spend all of its
time handling the server's shipments. (Sometimes, this happens even if all that the
client is doing is throwing the server's information away: trash can pile up and
become overwhelming. In other cases, the client can't throw the information
away, because the next delivery depends on the previous one in some crucial
way.)

•

 Even though the server maintains control, it can still get too busy and deliveries
can get back−logged. Some clients might need more frequent attention. Such a
client might not get what it needs often enough, or even in time. The
fruit−of−the−month club might be reliable, but not all computational servers are.

•

 Sometimes, the server doesn't know that (or when) the client wants or needs
something.

•

Both the pros and cons of this approach can be summed up by the following:

 The client has very little control over what it gets when.•

 The server has lots of control, but also has to do all of the work.•

One popular way of doing animation in the early days of the web involved having the
web server regularly push the next image in the animation sequence. This often swamped
clients — web browsers and the machines running them — making it difficult for their
users to do anything at all and giving server push a(n undeservedly) bad name.

19.4 The Nature of Duals

Server push and client pull are opposites of a special sort. The positive aspects of one are
the negative aspects of the other. In general, they are like mirror images. Pairs of
opposites like this are called duals, and they have some special properties. For example,
you can generally take almost any statement expressed in terms of these dual operations
(and their associated dual terms, such as client and server) and replace each operation
with its dual without changing the truth or falsity of the statement:

 Client pull gives the client a lot of flexibility, but the server doesn't have much
control over its workload.

•

Dual statement:

534 Chapter 19 Client−Server Interaction Patterns

 Server push gives the server a lot of flexibility, but the client doesn't have much
control over its workload.

•

Of course, it's not quite this simple — it's not too hard to find statements that you can't
turn around this way — but client pull and server push are duals, which mean's that
there's a fundamental symmetry in the ways that they work.

19.5 Pushing and Pulling Together

It is possible to build a system that uses multiple — chained — server pushes to produce
its result. In this case, the client of one push becomes the server of another push:

 For example, a farmer may push produce to the wholesaler —

taking it to market when it is ready — while the wholesaler in turn may deliver it to the
retailer when it becomes available.

Figure 19.7. You can chain together server pushes: the farmer sells to the wholesaler,
who sells to the retailer, who sells to the customer.

Similarly, a chain of client pulls — requests for services — allows one client to pull from
a server that may in turn request assistance from another service:

Requesting a book on interlibrary loan follows this process.

Figure 19.8. You can also chain together client pulls: I reserve a book at my branch
library, which asks the main library, which sends out the request to the entire county

system, which finally finds the book.

Note, however that each of these pictures involve the chaining of similar service models.
It is less simple to put a client pull client together with a server push server (or a server

Chapter 19 Client−Server Interaction Patterns 535

push client with a client pull server). (Iconically, there's no way to connect to

or to .) To make these transactions possible, we need to introduce additional

machinery. You cannot connect server pushes to client pulls (or client pull to server
pushes — there's that dual thing again!) without putting something different in the
middle.

19.5.1 Passive Repository

A passive repository is essentially just a the server side of a client pull combined with the
client side of a server push. In other words, it's the passive recipient of information
provided to it, and the passive provider of information when requested. It corresponds to
the “drop box” where a spy might leave information for his spy master. The server — or
spy — can drop off the information any time it wants. The client — or spy master — can
come by and pick up the information whenever it is convenient. Iconically, this is just a

. It has the important property that it can be used to connect a server push () with

a client pull (), making a functioning system:

Figure 19.9. A passive repository, like a spy's drop box, accepts both server pushes and
client pulls.

What happens if the server pushes a new value before the client pulls the previous one?
One possibility is that the passive repository actually contains a queue, i.e., keeps track of
each of the items it's been given and provides them to the client pull client, either one at a
time or all at once when the client requests them. (The first case, in which the repository
provides the values one at a time, works much like an event queue — see chapter 15 —
or channel — see chapter 21.)

Alternately, the repository can keep track only of the last thing deposited. In this case, the
repository will work well as long as the server updates the repository often enough that
the client is assured of reading a relevant value. If the client doesn't check the repository
often enough, though, the client runs the risk of missing some values.

A passive repository can be implemented using a single piece of shared data. For
example, the server push may use a setter method, while the client pull uses a
corresponding getter method. The data may be simple — a single value or object — or
complex, capable of holding many values, like a queue.

536 Chapter 19 Client−Server Interaction Patterns

Of course, there are both benefits and disadvantages to the use of a passive repository.
Advantages include the flexibility to allow the active components to act whenever it may
be convenient for them. But problems may arise:

 If the server pushes too much more often than the client pulls — the spy drops
off a lot of documents, but the spymaster doesn't claim them — the repository can
fill up.

•

 If server doesn't push often enough for the client — or if the client pulls to
frequently for the server — the client may receive out−of−date (stale) information
or no information at all. (The spymaster can't pick up documents faster than the
spy delivers them.)

•

The use of a passive repository works best when the client and server need to operate
relatively independently, but run at about the same rate.

19.5.2 Active Constraint

An active constraint is the dual of a passive repository. If a passive repository couples a
server push server and a client pull client, then an active constraint couples a server push
client and a client pull server. Each of these is a passive component — — so they

must be joined by a component that takes action: . Note that this component both

pulls (from the passive server) and pushes (to the passive client): . Imagine

a diner in a fancy restaurant. As soon as the diner puts down his fork, the fork disappears
from the table, reappearing at the dishwasher. How does this happen? The active
constraint — in this case, the busboy — gets (pulls) the fork from the diner and gives
(pushes) it to the dishwasher.

Figure 19.10. An active constraint pulls information from the passive server and supplies
it to the passive client.

This process requires no initiation of action on the part of either the client or the server.
Instead, each of them goes about their business, responding only when the active
constraint explicitly asks for something (or provides something). The intermediate entity
— the active constraint — does all of the work to make this transfer happen.

Chapter 19 Client−Server Interaction Patterns 537

Like server push and client pull, passive repository and active constraint are duals. A
server push server can be connected to a client pull client by a passive repository. A
client pull server (i.e., a passive server) can be connected to a server push (passive) client
by an active constraint. In fact, a passive repository IS the client side of a server push
attached to the server side of a client pull. By duals, an active constraint should be the
server side of a server push and the client side of client pull — and it is!

538 Chapter 19 Client−Server Interaction Patterns

Chapter Summary

 A service is something provided by one entity to another. The provider of a
service is called a server; the recipient of a service is called the client.

•

 An entity is a server or a client with respect to a particular service. Services can
be layered or chained.

•

 Client pull describes the situation in which a client initiates a service request.
This is like shopping at a grocery store, with all the attendant advantages and
disadvantages.

•

 Server push describes the situation in which a server initiates the request. This is
like subscribing to the fruit−of−the−month club.

•

 Client pull and server push are an example of duals.•

 A server−push server and a client−pull client can be connected using a passive
repository.

•

 A client−pull server and a server−push client can be connected using an active
constraint.

•

Chapter 19 Client−Server Interaction Patterns 539

Exercises

 Real−world interactions are often complicated mixes of clients and servers. One
way to tell who is (apparently) the server is that the client often pays for a server's
services. Consider each of the following interactions and describe who is the
client and who the server:

 I buy a computer from a store.a.
 I rent a car.b.
 I rent a computer from a store.c.
 I rent a computer from a service that (i) doesn't charge me but (ii) requires
that I read ads before using the computer.

d.

1.

540 Chapter 19 Client−Server Interaction Patterns

Chapter 20

 Synchronization

Chapter Overview

 What happens when two entities want to use the same thing at the same time?•

Synchronization is an issue that arises when multiple animacies share state. In Java, this
means that there are multiple Threads directly or indirectly accessing some field of an
object. These Threads may either be explicitly created or automatically generated as, e.g.,
the user interface Thread in java.awt.

When an object accesses state, it does so either to obtain or to set a value. If the access
does not change the value, we call it a read. An access that changes the value of some
state is called a write. If more than one thread can access a state, we call it shared state.
Shared state can lead to problems if there are multiple accesses of the state at the same
time and at least one of those accesses is a write. To avoid these problems, we can
prevent sharing, we can prevent writing, or we can use specialized mechanisms or
protocols to minimize conflict.

Objectives of this Chapter

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

20.1 An Example of Conflict

When I was in high school, we took a class trip to Washington D.C. While we were there,
we had a class photograph taken on the Capitol steps. Since there were a lot of us, they
used a panning camera. The photographer started off pointing to the left, then scanned
across the class until he got to the rightmost edge. The entire process took a minute or
two.

The interesting part came when the photograph was developed. One of my classmates
appeared in the upper left−hand corner of the picture. He also appeared in the upper
right−hand corner! Here's how he did it: He started in the left edge of the group. As soon
as the camera had moved past him — during the minute or so that the photographer was
scanning the group — this classmate ran from one end of the group to the other. By the
time that the photographer got to the right edge of the group, he had reached that side and
was standing among the students there.

This is a synchronization failure. The problem is that the scanning of the group took
time. Between the time that the scan started and the time that the scan completed, the
student was able to change his position, so that the camera recorded him in both places.
This is called a read−write conflict: the camera “read” a value that was incorrect. (My
classmate's new position had already been recorded. A similar problem would arise if
he'd run the other way — then neither position would be recorded.)

A second example arises when two writes conflict. Say that our bank account contains
$1000. We go to deposit $100. The ATM (automated teller machine) reads our current
balance — $1000 — and goes off to calculate the new balance. At the same time, the
bank's computer goes to give us our periodic 1% interest. It, too, reads our current
balance ($1000) and sets out to compute our new balance from this.

In the meantime, the ATM finishes computing our new balance and stores it in the central
accounting ledgers — $1100. Finally, the banks' computer calculates our balance after
interest — 101% of $1000 is $1010 — and writes that value to the central ledger.
Unfortunately, the result is that after deposit and interest, we have a balance of $1010, not
$1110.

These failures occur because there are two things going on at once — a student running
and a camera photographing, or two processes computing new balances — that interact in
inappropriate ways.

20.2 Synchronization

Synchronization is required when two or more threads of control (animacies) access
the same (piece of) state and that state changes. Synchronization prevents one animacy
from reading the state while the other might be changing it. In Java, it also ensures that

542 Chapter 20 Synchronization

each read is of an up−to−date version of the state.

Synchronization is only necessary when there can be a write to shared state.

20.3 Java's synchronized Declaration

The primary means of ensuring mutual exclusion in Java is through synchronized
methods.

20.3.1 Synchronizing Methods

In Java, a method may be declared synchronized. In each object at most one
synchronized method can run at any one time. We say that a synchronized method
obtains a lock on its containing object before it can execute. Since there is only one lock
for each object, this prevents any other synchronized method from running until this
method completes: no other method can obtain a lock on the object until this method
releases its lock. This one−animacy−running−at−a−time property is called mutual
exclusion.

Locking an object only prevents access to other methods or code blocks that also require
a lock on the same object. Locking an object does not prevent other (non−synchronized)
methods of the object from running, nor does it prevent other use of the object.

20.3.2 Synchronizing Blocks

Java has a second form of synchronized execution. A special synchronized statement
type can be used to provide mutual exclusion on its body. Unlike synchronized methods,
the synchronized statement (sometimes called a synchronized block) must explicitly
specify the object it locks. The syntax of this statement is:

synchronized (objectReference) {
statements

}

Here,objectReference is some expression whose value is of an object type; the
locked object is the expression's value. TheobjectReference expression should be
one whose value does not change; otherwise, careless coding can easily lead to a failure
of mutual exclusion.

Chapter 20 Synchronization 543

20.4 What Synchronization Buys You

Consider the class photograph described above. If the photographer had had
synchronization, he would have been able to tell us not to move — and would have been
able to enforce it — until after the photograph was done. My classmate never could have
appeared in the single picture twice. (Well, at least not without digital enhancement.)

The bank example is similar. Real ATMs lock the account during the transaction, so that
the interest figuring process couldn't read the balance until the ATM was done. In this
case, the two computations would not overlap and the correct final balance would be
reached.

20.5 Safety Rules

Sometimes, a set of data is interdependent. For example, we might have two fields
corresponding to a street address and a zip code. Changing an address might involve
changing both of these fields. If the zip code is changed without a corresponding change
to the street address, the data may be inconsistent or incoherent. Such a set of operations,
which must be done as a unit — i.e., either all of the operations are executed or none are
— in order to ensure consistency of the data, is called a transaction. The property of
“doing all or none” is called atomicity. A system in which all transactions are atomic is
transaction−safe.

The following rule suffices to ensure that your system is transaction−safe:

All (potentially changeable) shared data is accessed only through the synchronized
methods of a single object; no interdependent piece can be accessed independently.

Note that this means that shared data cannot be returned by these methods for access by
other methods. If shared data is to be returned, a (non−shared) copy must be made.
Further, if interdependent values are to be returned (i.e., a portion of the shared data is to
be used by other methods), all of the relevant values must be returned in a single
transaction.

For example, the address and zip code of the previous example should not be returned by
two separate method calls if they are to be assumed consistent.

544 Chapter 20 Synchronization

public class AddressData {

 private String streetAddress;
 private String zipCode;

 public AddressData(String streetAddress, String zipCode) {
 this.setAddress(streetAddress, zipCode);
 ...
 }

 public synchronized void setAddress(String streetAddress,
 String zipCode) {
 // validity checks
 ...
 // set fields
 ...
 }

 public synchronized String getStreetAddress() { // problematic!
 return this.streetAddress;
 }

 public synchronized String getZipCode() { // problematic!
 return this.zipCode;
 }
}

If this class definition were used, e.g. for

printMailingLabel(address.getStreetAddress(), address.getZipCode());

it would in principle be possible to get an inconsistent address. For example, between the
calls to address.getStreetAddress() and address.getZipCode(), it is
possible that a call to address.setAddress could occur. In this case,
getStreetAddress would return the old street address, while getZipCode()
would return the new zip code.

Instead, getStreetAddress() and getZipCode() should be replaced by a single
synchronized method which returns a copy of the fields of the AddressData object:

public synchronized SimpleAddressData getAddress() {
 return new SimpleAddressData(this.streetAddress, this.zipCode);
}

The SimpleAddressData class can contain just public streetAddress and
zipCode fields, without accessors. It is being used solely to return the two objects at the
same time.

Chapter 20 Synchronization 545

20.6 Deadlock

If you are not careful, it is not too difficult to get into a situation where multiple active
objects each prevent the other from running.

Consider two objects which each need to control both the chalk and the eraser in order to
write on the blackboard. The first uses the following algorithm:

 Wait until the chalk is available, then pick it up.1.
 Wait until the eraser is available, then pick it up.2.
 Write (and erase).3.
 Release the eraser.4.
 Release the chalk.5.

The second uses the following algorithm:

 Wait until the eraser is available, then pick it up.1.
 Wait until the chalk is available, then pick it up.2.
 Write (and erase).3.
 Release the chalk.4.
 Release the eraser.5.

If the two processes time things just right, it could be the case that they each complete
their first steps before reaching their second. Now, the first process will be stuck waiting
for the eraser (which the second process has), while the second will be stuck waiting for
the chalk (which the first has). This situation — in which neither process can do
anything, and both are stuck waiting — is called deadlock. (The processes in this case are
effectively dead.)

There is an analogous situation that arises when both processes put down the objects they
have and pick up the other object (repeatedly). In this situation, although both processes
are still alive, neither is making any progress. This is called livelock.

The desirable property of a system that doesn't reach deadlock is liveness. In general,
there is a tradeoff between safety and liveness, and a significant part of programming
concurrent applications is designing to simultaneously maximize both.

20.7 Obscure Details

This section is not for the faint of heart. While it is true, it is not pretty. Feel free to skip
it.

546 Chapter 20 Synchronization

20.7.1 Synchronization and Local Copies of State

In Java, each Thread may keep its own copy of shared state. This means that one copy
may be inconsistent with another. Using synchronized forces a Thread to refresh
all of its shared state, ensuring that it does not have a stale copy. Thus, even if timing
constraints guarantee that only one Thread can access the state at a time, it may still be
necessary to use synchronized. However, in this case the identity of the locked
object is irrelevant; any synchronized method or block will do. (An alternate solution to
this problem, though not to synchronization in general, is the volatile keyword on fields.)

20.7.2 Synchronized Blocks and Lock Object References

It is the value returned by the expression (at the time that the lock is obtained), and not
the expression itself, that is locked. For example, given the following class definition:

class SynchronizationFailure {

 Object foo = new Object();

 void failToSynchronize() {
 synchronized (foo) {
 foo = new Object();

other statements
 }
 }
}

the synchronized block does not provide proper mutual exclusion. Consider a particular
SynchronizationFailure instance, popularObject. If Jack and Jill both
call popularObject.failToSynchronize() with appropriate timing, here is
what could happen:

Jack's call to failToSynchronize obtains a lock on
popularObject.foo's current value, say object 1.

1.

 When the line foo = new Object(); is executed, popularObject.foo
is assigned a new value, object 2.

2.

Jack's call continues to executeother statements.3.

 In the meantime, Jill calls popularObject.failToSynchronize().
When Jill's call reaches the synchronized block, it attempts to obtain a lock on
popularObject.foo's current value, object 2. Although Jack's call is still
inside the synchronized block, Jill's call is able to enter because it attempts to
lock a different object from Jack's call.

4.

Chapter 20 Synchronization 547

Note that this failure can arise any time the value of theobjectReference expression
can change, even when it does not change inside the synchronized block. To avoid such
failures, the synchronization expression (i.e., theobjectReference on which the
lock is obtained) should generally be an expression whose value does not change.

548 Chapter 20 Synchronization

Chapter Summary

 Conflict can arise when multiple animacies access mutable state. For example, an
entity may read an impossible value.

•

 This kind of conflict can be prevented by limiting state access to single animacy
or by making all shared state immutable.

•

 When shared mutable state is desired, access can be controlled through Java's
synchronization mechanisms.

 Each object has its own “lock.”♦

 At most one animacy can hold this lock at any time.♦

 A method may be declared synchronized. An animacy cannot
execute a synchronized method until it holds the lock of the object to
which the method belongs.

♦

 A block may be declared synchronized on a particular object. An
animacy cannot execute a synchronized method until it holds the lock of
the specified object.

♦

•

 A transaction is a group of operations which must either be completely executed
or not executed at all. Partial execution is not legal. A system is transaction−safe
if all of its transactions are executed atomically, i.e., partial execution is not
possible.

•

 In general, increasing (transaction−)safety means decreasing liveness, a
program's ability to run towards completion.

•

 Transactions that interfere with one another so that all execution stops are
called deadlocked.

♦

 Sometimes transactions interfere so that execution continues, but no
progress can be made towards completion. This is called livelock.

♦

Chapter 20 Synchronization 549

Exercises

550 Chapter 20 Synchronization

Chapter 21

 Network Programming

Chapter Overview

 How do entities on one computer communicate with entities on another
computer?

•

Many modern applications involve multiple computers. This chapter introduces Java's
primary mechanisms for making such interaction possible: communication channels, or
streams, over which information can be transmitted. Transmission over these channels is
often mediated by a Lector — one who reads — and/or a Scribe — one who writes — on
behalf of an entity. Communication may occur across a network, between co−located
entities, or with persistent storage resources such as a File on disk. The stream
abstraction gives these diverse kinds of communication a uniform interface.

In this chapter, we present a series of Lector/Scribes, initially relying only on local
resources, ultimately establishing and controlling a network connection. We conclude
with a discussion of a multi−threaded server and a brief look at the role of a server in a
network architecture.

Objectives of this Chapter

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

mailto:ipij@mkp.com

21.1 A Readable Writeable Channel

Two entities often need to communicate with one another. We have seen how this can be
accomplished using direct method invocation. But that kind of communication requires
that the calling object know the identity of the method's owner. This is the equivalent of
having a face−to−face conversation: You must know to whom you are speaking. In this
chapter, we explore a more abstract communication mechanism that uses intermediate
objects — called streams — to allow one entity to communicate with another indirectly.
Stream communication is more like talking on the telephone. The same device can be
used to interact with many different people — or entities — without requiring direct
contact. Streams similarly provide a uniform interface that can be used to communicate
indirectly with a wide variety of objects or resources.

A stream — or, more properly, a stream of values — is an abstractly defined resource
containing a sequence of values that can be processed, one by one. Streams come in two
flavors: input streams, which support the reading of values, and output streams, which
support their writing. In other words, an input stream is a stream from which these values
can be read, one by one, in order; an output stream is such a resource to which values can
be written one by one. In this chapter, we will concentrate on stream−like objects and
how they are used.

21.1.1 Tin Can Telephones

One way to think about a stream is to consider the tin can telephones many of us played
with as children:

Picture of tin can telephone; pic of Tweedles talking; stream ends marked.

Take two tin cans with one end removed from each. Punch a whole in the
center of the intact end of each can. With a long piece of string, thread the
two cans so that their flat ends face each other. Tie knots in the ends of the
string. Pull the string tight, so that it is stretched between the two cans.
Talk into one can; have someone else listen at the other.

Figure 21.1. Tin Can Telephones.

552 Chapter 21 Network Programming

This is a simple device that allows you to put something in one end and allows someone
else to retrieve it at the other end. The end into which Tweedledum is speaking is like an
output stream. The end to which Tweedledee is listening corresponds to an input stream.
Anything Tweedledum writes to the output stream can be heard by Tweedledee (reading)
the input stream.

[Footnote: Note, though, that the communications medium itself — the tin can telephone
— isn't an input stream or an output stream. The medium has two ends, one of which is
an input stream, and the other of which is an output stream. In the case of the tin can
telephone, these roles might be marked on the two cans: “Listen here” on one can,
“Speak here” on the other. In the case of streams, there's less room for confusion. A
stream is either an input stream or an output stream, and the two are not interchangeable.
]

One nice property of this system is that the tin can telephone doesn't rely on face to face
contact between the conversationalists. Using a stream, a Java entity can talk to all
different kinds of things without needing to know much about those things.
Communication relies on properties of the stream, rather than on properties of the thing at
the other end. It also means that the communicators don't have to be directly in contact,
as long as each holds one end of the tin can telephone, or stream. For example,
Tweedledum can use the same kind of device to talk to the Jabberwock, even though
Tweedledum knows far better than to approach the Jabberwock face to face.

The tin can telephone story so far works well when Tweedledum wants to communicate
something to Tweedledee. But what happens when Tweedledee has something to say as
well? We can accomplish this using the same approach. But in order to have
simultaneous two−way communication, it is useful to have two tin can telephones. Then
Tweedledum listens to one and talks into the other; Tweedledee listens to the one
Tweedledum talks into, and talks into the one Tweedledum is listening to.

Picture of Tweedles talking on two tin can telephones.
Also the view from Tweedledee's perspective.

Figure 21.2. Two−way tin can communication.

In the same way, Java streams often come in pairs. One — the −dum to −dee route — is
an output stream for −dum and an input stream for −dee. The other — −dee to −dum —

Chapter 21 Network Programming 553

is output stream for −dee and an input stream for −dum. If you are standing at one end —
like Tweedledee — you are holding one input stream (from which you can read) and one
output stream (to which you can write).

21.1.2 Streams

In this book so far, we have talked about cs101.io.Console, a particular concrete resource
that behaves like one end of the two−stream configuration. Console behaves like an input
stream — through its readln method — and also like a separate output stream — through
its println(String) method. The Channels used in interlude 1 are another example of
stream−like behavior, though the methods provided for reading and writing are somewhat
different from Console's. Like those channels, many kinds of Java streams are used to
connect two entities.

Streams can also be used to interact with things that may be more outside of your
program, such as a File — information stored on your disk — or a network connection.
Each different kind of stream−like resource has a slightly different set of (read and write)
methods, and each has a very different kind of behavior at the “other” end of the
resource. Writing to the Console makes the information appear on your Java console, i.e.,
on your screen. Writing to a file stores the information away on your disk for later
retrieval. Writing to a network connection sends the information to another computer. But
from the read/write end — from Tweedledee's perspective — the stream makes these
resources seem fundamentally similar.

A stream is general way to think about each of these connections. Individual connections
implement different methods to actually make stream communication possible. No matter
the differences among them, these methods are generally used in stereotypical ways. The
ways that reading — extracting information from an input stream — and writing —
depositing information in an output stream — are used within a program is the topic of
the first part of this chapter. Even the general properties of read and write operations are
shared by most of these stream−like connections.

In the first part of this chapter, we will simply use the notation inStream.read()
and outStream.write(message) whenever we are accessing a read or write
method. All of the code in that portion of the chapter will work if the text
inStream.read() is replaced with the text cs101.io.Console.readln()
and the text outStream.write(message) is replaced with the text
cs101.io.Console.println(stringMessage). We use the more generic
notation to indicate that other substitutions are equally possible. In the latter parts of this
chapter, we will introduce other kinds of streams and talk about other code that might be
used to replace inStream.read() and outStream.write(message).

554 Chapter 21 Network Programming

21.2 Using a Channel

This section develops a very general set of classes capable of reading from and writing to
a general read/write resource. It is tempting to call the thing that does the reading a
Reader and the thing that does the writing a Writer. However, Java has reserved those
names for other classes, described below. Instead, we will call the thing that does the
reading a Lector (meaning “one who reads”) and the thing that does the writing a Scribe
(“one who writes”). We will define the interfaces for these classes first.

Although the details will vary from application to application and will depend in some
part on the kind of resource from which you are reading or to which you are writing, the
general pattern of interaction with a read/write resource is similar. In this section, we will
develop a fairly general class whose instances are capable of reading from and writing to
resources of this sort. In the succeeding sections, we will modify that class to tailor it to
the kind of read/write resource represented by a network connection.

21.2.1 Streams for Writing

Let's say that you have a thing, say, message. You want to write message to your output
stream, outStream. Accomplishing this is as easy as it sounds:

outStream.write(message);

Let's look more carefully at what is going on here. Consider the write end of a channel.
This is a stream that implements awrite method, such as Console.println(String). To
use this outStream.write(Object) method, all that we need to do is invoke it with the
appropriate Object.

The write method of a resource like this one is just a server push client. It accepts
information when the server writes it. To use such a write method, you must build code
that acts as a server push server towards the write method. It must explicitly take action.
That is exactly what happens when we invoke

outStream.write(message);

21.2.1.1 Flushing Out the Stream

One detail is worth noting. Remember that the output stream is one end of something that
has another end (like the tin can telephone). When an output stream's write method is
invoked, it causes the thing written — the message — to pass into the stream. It does not,
however necessarily cause this thing to be available at the other end of the stream. This is
like speaking into a tin can telephone with a noticeable delay between the ends. It is quite
possible that the message may be “inside” the stream. It will eventually appear at the
other end, but not necessarily when the writer expects it to do so.

Chapter 21 Network Programming 555

Picture of balls stuck inside a pipe.
Figure 21.3. When you write something to an output stream,

it can get stuck “inside” the stream.
A call to the stream's flush method will push these objects through.

If it is really important that the information you wrote to the stream not get stuck inside,
you can use a special method, called flush(), to push the information through. When
an output stream's flush() method is invoked, anything that's been written gets pushed
along through the stream, so that it appears at the other end. If there are multiple things
that have been written, they appear at the other end one by one, in the correct order;
flush() doesn't change anything, it just gets things moving along.

Why might something get stuck inside a stream? Imagine that you have a carton that can
hold twelve eggs. You go to the henhouse and pick up an egg. (You “write” the egg to the
carton.) Back in the house, the cook is waiting for eggs to make breakfast. But it is silly
for you to go back to the house with just one egg if the cook can't start until s/he has
enough eggs for breakfast. So you pick up another egg and write it to the carton. You
keep going until you have a full carton of eggs.

Streams can work the same way. They can wait until there is a group of information to be
sent, then send the whole collection at once. Just as it saves you time to collect a carton
full, it can make more efficient communication to wait for a full “packet” of information.

When you invoke a flush() method, that causes the information to be sent, regardless
of how much is waiting. In the egg collecting example, it would make you go to the
house even if you'd only collected two eggs so far. Then you'd have to go back to the
henhouse and collect some more. Unnecessary flush()es are wasteful, just as in this
example.

On the other hand, a judicious flush() every now and then can be beneficial. What if
you were determined only to return to the house when you had a full dozen eggs? But say
that today the hens laid only eight eggs. You might stay in the henhouse until tomorrow
rather than return with a partially full carton. In this case, a flush() would be just the
right thing: It would get the eight eggs you had collected where they needed to go, rather
than waiting for the next four eggs (that might never come).

556 Chapter 21 Network Programming

21.2.1.2 A Scribe Example

So far, we have seen how writing to an output stream works. We can encapsulate this
knowledge inside a method that takes an object and sends it out over the output stream.
The interface for an object supplying this behavior might read:

public interface Scribe {
 public void send(MessageType m);
}

[Footnote: Note that we are being deliberately cagey about the type of object that can be
written (or read). This is because that depends on the specific kind of stream that you're
dealing with. Nothing in this section relies on the specific kind of stream or type of
message.]

An example implementation of this method (to be encapsulated in an appropriate class)
might be:

public void send(String m) {
 Console.println(m);
}

In other words, a Scribe is an object that keeps track of its output stream and, on (send)
request, writes the object to be sent to the stream.

A GenericScribeImpl class implementing this interface would need an output stream. It
could then simply use that stream's write method on demand. If it is important that our
writing not be delayed, we might add a flush() invocation to the send method as well.

public class GenericScribeImpl implements Scribe {

 private OutputStreamType outStream;

 public GenericScribeImpl(OutputStreamType outStream) {
 this.outStream = outStream;
 }

 public void send(MessageType m) {
 outStream.write(m);
 outStream.flush(); // (maybe)
 }
}

Chapter 21 Network Programming 557

Instances of this Scribe object are suitable for use in event−driven programs. For
example, whenever something happens that needs to be communicated, the Scribe's send
method could be invoked. It would then write the relevant communication to its output
stream.

For example, if we have a TextField and a Scribe:

TextField textField = new TextField();
Scribe scribe = new GenericScribeImpl();

we might connect them by having the Scribe write out the text in the TextField each time
the return key is hit. (Recall that hitting the return key in a TextField triggers an
ActionEvent).

This can be accomplished using an actionPerformed method that says:

public void actionPerformed(ActionEvent ae) {
 this.scribe.send(this.textField.getText());
}

[Footnote: We've omitted a few details from this example. First, the actionPerformed
method is embedded in a ScribeListener class whose full definition is:

public class ScribeListener implements ActionListener {

 private TextField textField;
 private Scribe scribe;

 public ScribeListener(Scribe scribe, TextField textField) {
 this.scribe = scribe;
 this.textField = textField;
 }

 public void actionPerformed(ActionEvent ae) {
 this.scribe.send(this.textField.getText());
 }
}

An instance of this ScribeListener class is then used to connect the TextField with the
appropriate Scribe.

textField.addActionListener(new ScribeListener(scribe, textField));

]

558 Chapter 21 Network Programming

21.2.2 Streams for Reading

Writing to an output stream is fairly straightforward. Reading from an input stream is
somewhat more complicated. To help us read from an input stream, we will define a class
called Lector: “one who reads”.

The innermost portion of the Lector says something parallel to the Scribe. We certainly
want to invoke the stream's read method:

inStream.read()

Immediately, we are faced with the first complication. What should the Lector do with
the message read from its input stream? There are many possibilities, depending on what
you want your Lector to do. For example, the Lector could just let the user know that it
has read the message (through the Java console):

Console.println(“Lector: just read ”
 + inStream.read().toString());

This line of code reads the message from the input stream, finds its printable equivalent
using toString, and then prints this version to the Java console. It is one example of a
thing that we might want a Lector to do over and over again. We will return to this issue
and see more complex solutions below.

The second difference between reading and writing is that the Lector must be an active
object. The Scribe is automatically invoked whenever an object is available to be written.
But the Lector must check to see for itself whether an object is available for reading. The
input stream is passive.

[Footnote: So is the output stream. But the Scribe is activated by the thing that asks it to
send.]

The Lector must invoke the input stream's read method by itself. This means that an
instruction follower has to come from the Lector itself. Not only that, but the instruction
follower of the Lector may wind up spending a lot of time waiting for something to
become ready to read. When there is no such value, the read request doesn't return. The
instruction follower that executed it is simply stuck waiting. This is because reading is a
blocking operation.

21.2.2.1 Reading and Blocking

The Lector invokes the input stream's read method — asking for the next value —
whether or not there's a value ready to be read. It is this ready−or−not condition that
poses the real issue. When there is no value to return, the Lector may get stuck waiting
for one.

Chapter 21 Network Programming 559

The read operation on almost any kind of stream is called a blocking read. This means
that it will not return until the appropriate information becomes available. For example, if
you type something on the Java console, ending with the return key, Console's readln
method will return this String. If you invoke Console.readln() again, it will return
the next return−key−terminated String that you type. But what if you haven't (yet) typed
another return−key−terminated String? In this case, the readln method will not return.
The method invocation continues until an appropriate String becomes available; the
Console's readln method waits for a carriage return. This waiting — for the necessary
information — is called blocking.

Because stream reading methods almost always are blocking methods, they generally
need to be invoked by a dedicated instruction follower, i.e., one that can sit around and
wait until the read invocation can complete. The blocking read method itself is
essentially a client pull server: it provides the information on request. To interact with a
blocking read method, you must write a client pull client: active code that invokes the
read method on a regular basis.

The fact that the Lector might get stuck waiting for an object to become ready — that the
read might block — means that the Lector must have its very own dedicated instruction
follower whose job is to wait for the read. This instruction follower can't be expected to
get much of anything else done, because it might spend a long time waiting for the read
invocation to un−block. We need a dedicated Thread — instruction−follower — who can
afford to spend its time waiting. This is like sending one person to stand in line while the
others do something. You don't want to tie everyone up standing in line, and if you only
have one person, you can't afford to block (wait); you need to hire someone to wait for
you.

We can resolve this issue by dedicating an instruction−follower to the read task. This is a
job for an animate object.

21.2.2.2 A Lector Example

We are now ready to write the Lector class. The Lector, like the Scribe, keeps track of a
stream. But instances of this class, unlike those of Scribe, are animate objects, each with
its own AnimatorThread. A Lector can afford to block each time it calls its input stream's
read method, because it has a dedicated instruction follower. If the instruction follower's
invocation of read blocks, it is not a problem because this instruction follower is not
expected to be doing anything else other than reading from the input stream.

560 Chapter 21 Network Programming

public class Lector implements Animate {

 private InputStreamType inStream;
 private AnimatorThread mover;

 public Lector(InputStreamType inStream) {
 this.inStream = inStream;

 this.mover = new AnimatorThread(this);
 this.mover.start();
 }

 public void act() {
 Console.println(“Lector: just read ”
 + this.inStream.read().toString());
 }
}

This code shows how a Lector can print the read message to the Console. But this isn't
always what we'll want to do when something is read from an input stream. For example,
we might want to do a dispatch on case, depending on what the input it reads is. This
might involve some giant conditional with inStream.read() as the switch
expression. Or we might want to pass the new message around to everyone we know, as
in the broadcast server towards the end of this chapter.

This situation should sound vaguely familiar. Something happens: the Lector reads
something from the input stream. This is an event. There are many different ways that
this event could be handled. In fact, it's not clear that the Lector should do anything itself.
Maybe what the Lector should do is to delegate this responsibility to some other object.
This could be done using the simple event handling of chapter 15 or the more complex
event delegation of chapter 16.

Paralleling chapter 16, let's define an interface for this separate event handler object:

public interface LectorListener {
 public void messageRead(MessageType m);
}

An example LectorListener class — one whose instances simply print their message to
the Java console — might be:

Chapter 21 Network Programming 561

public class LectorPrinter {

 public void messageRead(MessageType message) {
 Console.print(“Lector: Just read: ”);
 Console.println(message.toString());
 }
}

Now we'll need a way for the LectorListener to register with the Lector. We will assume
just one LectorListener per Lector for now, though we could certainly do otherwise (e.g.,
using a Vector). The modifications are highlighted.

public class GenericLector implements Animate {

 private InputStreamType inStream;
 private AnimatorThread mover;

private LectorListener ll;

 public GenericLector(InputStreamType inStream) {
 this.inStream = inStream;
 this.mover = new AnimatorThread(this);
 this.mover.start();
 }

public void addLectorListener(LectorListener ll) {
 this.ll = ll;
 }

 public void act() {
this.ll.messageRead(this.inStream.read());

 }
}

21.2.3 Encapsulating Communications

We have seen how to write the code for a generic Scribe, a class that manages writing to
an output stream. We have also seen how to write a generic Lector that actively reads
from an input stream. Often, it is useful to package these two functions together. In the
single resulting class, we consolidate all management of communications with a single
remote entity. This object may add functionality. It may, for example, do some packing
or unpacking for us (if we don't want to and receive objects in the same form that we use
them within our program). It may do other bookkeeping, for example recording what
information comes in or timestamping it. Such a communications manager might also
establish the streams initially, handle exceptions, and otherwise provide a single point of
contact for the rest of the entities with which it interacts directly. From within its local

562 Chapter 21 Network Programming

community, this entity provides an interface to the remote entity.

Picture of local communications manager

Figure 21.4. A local communications manager.

These two classes can be combined into a single class:

public class LectorScribe implements Scribe, Animate {

 private OutputStreamType outStream;
 private InputStreamType inStream;
 private AnimatorThread mover;
 private LectorListener ll;

 public LectorScribe(OutputStreamType outStream,
InputStreamType inStream) {

 this.outStream = outStream;
 this.inStream = inStream;
 this.mover = new AnimatorThread(this);
 this.mover.start();
 }

 public void act() {
 this.ll.messageRead(this.inStream.read());
 }

 public void send(MessageType m) {
 this.out.write(m);
 this.out.flush(); // (maybe)
 }

 public void addLectorListener(LectorListener ll) {
 this.ll = ll;
 }
}

Note that this class will often have (at least) two instruction−followers active in it: the
AnimatorThread named by this.mover and whatever Thread invokes this object's send

Chapter 21 Network Programming 563

method (from outside this class).

21.3 Real Streams

So far, we have been discussing input streams and output streams as hypothetical
idealized objects. In Java, there are a series of classes that actually implement this stream
behavior. In this section ,we will look at the Java classes that implement stream behavior.
All of the classes described in this section are defined in the package java.io unless
otherwise specified. Further information on many of these classes are included in the Java
IO Quick Reference appendix.

21.3.1 Abstract Stream Classes

Java actually has four abstract classes that implement stream behavior: two input stream
types, from which you can read, and two output stream types, from which you can write.
The input stream classes are called InputStream and Reader. The output stream classes
are OutputStream and Writer. In this chapter, we use the term stream to refer generically
to all four of these classes. Each of these classes is abstract, meaning that any instance of
that class is actually an instance of some subclass. They are all defined in the package
java.io.

A stream is a resource containing a sequence of values. The values in the resource
underlying an InputStream or an OutputStream are stored as bytes, i.e., eight bit pieces of
data. The values in the resource underlying a Reader or Writer are stored as chars, i.e.,
sixteen bit data. Certain contexts produce byte streams, while others produce char
streams. You do not need to worry about the differences, but you do need to keep track of
which one you have.

Every stream has a public void close() method. This method frees up the
underlying resources that have been used to create this stream. When your program is
done with a stream, it should call that stream's close() method. When your program shuts
down, any open resources will be closed automatically; however, it is good practice to
close your streams as soon as you are done with them.

[Footnote: Although Java includes automatic garbage collection — it will throw away
your stream object if nothing in your program can possibly access it any more — Java
does not necessarily release the underlying system resource (i.e., the actual connection to
a file or whatever else your stream is connected to) at that time.]

InputStream, Reader and their extensions support a variety of methods for reading.
InputStream's read method returns a byte, while Reader's returns a char.
OutputStream, Writer and their extensions support methods for writing. The write
method of OutputStream takes a byte as its argument.

564 Chapter 21 Network Programming

[Footnote: Actually, OutputStream's write method takes an int, but it only writes the
low order byte of that int to the stream.]

The write method of Writer takes either a char or an int or a String.

Each of the abstract stream classes has several subclasses that provide additional
behavior. For example, some of these classes provide a wider range of methods, such as
public Object readObject() and public void println(String). You will often find it more
useful to use one of these extended classes. Those classes are discussed in the next
sections; their details are summarized in the Java IO Quick Reference appendix.

Many stream methods also potentially throw an exception. The most common exception
to be thrown by a stream method is IOException.For example, when you go to read
from a stream, if the underlying resource has somehow been corrupted, the read method
may throw IOException. When using a stream method, you will often need to
catch this exception. IOException also has several more specific subclasses, each
applicable to a particular failure condition.

21.3.2 Decorator Streams

Java uses a technique called decoration to add features to streams. For example, suppose
that you have an InputStream but have decided that you'd really rather have a Reader.
Java has a class called InputStreamReader that is a special kind of Reader. Specifically,
InputStreamReader's constructor takes an InputStream as an argument. The resulting
InputStreamReader uses the same underlying stream resource as the InputStream
argument, but the InputStreamReader is a Reader, not an InputStream:

Decoration

Suppose you have an InputStream called in, and execute

Reader reader = new InputStreamReader(in);

Now reader.read() returns the first char in the
underlying input stream. The streams named in and reader
use the same underlying input stream!

This pattern — adding features by constructing a more sophisticated object around a
simpler one — is called decoration. Java streams make extensive use of decoration to

Chapter 21 Network Programming 565

add features. For example, you can now treat reader as you would any Reader,
decorating it further using the appropriate constructors.

[Footnote: There is, however, no way to make an InputStream from a Reader (or an
OutputStream from a Writer).]

Some of the decorations that you might wish to apply to your stream include:

Buffering. This reads a larger group of data from the stream into some hidden storage,
and then reads from that storage on demand. This is particularly useful when you are
reading from a file or a network connection. Buffering is provided by the
BufferedInputStream and BufferedReader classes. BufferedReader also has a particularly
useful readLine method that returns a whole String, up to but excluding the terminating
newline.

Data. DataInputStream is a class whose instances provide a variety of read methods that
allow you to read Java primitive data. These include readInt, readBoolean, etc. Note,
however, that there is no corresponding DataReader class.

Objects. An ObjectInputStream is very much like a DataInputStream with the addition of
a method for reading whole Java Objects: readObject. However, only objects that
implement the Serializable interface may be read from an ObjectInputStream.

There are similar decorations on the output side. An OutputStream can be used to create a
Writer using OutputStreamWriter's constructor: new
OutputStreamWriter(yourOutputStream) On the output side, buffering
also enhances efficiency, especially when writing to a file or network connection. The
BufferedWriter also has a newLine() method. There are also Data and Object
OutputStream classes. Only Serializable objects can be written to an ObjectOutputStream
or ObjectWriter.

Finally, there are a pair of classes called PrintStream and PrintWriter.

[Footnote: You should use PrintWriter, rather than PrintStream, if you want to create an
instance of this kind of output stream. PrintStream exists only for compatibility with
certain objects already built in to Java.]

These output stream classes have the special advantage that none of their methods throws
IOException. Their methods are called print and println, rather than write, to indicate
their non−exception−throwing status. There are print and println methods for essentially
every type of Java primitive. Using an Object's toString method, print and println can
also print any kind of Java Object. This makes these output stream types very useful for
writing messages, e.g. to the Console.

There are several other decorator stream types defined in the Java.io package. Many of

566 Chapter 21 Network Programming

those are designed for special purposes. A few are documented in the Java IO Quick
Reference appendix of this book.

21.3.3 Stream Sources

Now that you know how to manipulate streams, you may be wondering where you can
find one. Streams come from a variety of different sources, depending on the resources
that they connect.

For example, there are a series of streams that communicate with Files. These are called
FileInputStream, FileOutputStream, FileReader, and FileWriter. Their constructors take
the name of the file to read from or write to. These streams allow information to be read
from or written to persistent storage, such as a disk. Since disk interactions are relatively
slow, it is common to combine several disk access operations using the appropriate kind
of buffered stream.

Another source of streams is pipes. A PipedInputStream (or OutputStream, Reader, or
Writer) can be used to communicate between two Java objects. To do this, you must
create a matched pair (PipedInputStream and PipedOutputStream or PipedReader and
PipedWriter), then use the connect() method of one piped stream to join it to its mate.

We will look more closely at networked streams — streams that communicate between
two computers — below. There are also streams that read from or write to arrays or
Strings.

There are two additional streams with which you are already familiar, though you do not
know it. These are the streams called the standard input and standard output. They are
the streams that connect to the Java console. So far, you have used these through the
cs101.io.Console class. In fact, there are two streams corresponding to the methods of
Console.

Both System.in and System.out are static fields of the class
java.lang.System. System.in is the standard input (or “stdin”) stream, while
System.out is the standard output (“stdout”). There a third stream, System.err, the
standard error stream (“stderr”), that also writes to the Java console by default.
System.err is intended for error messages, while System.out is intended to output to the
user.

The type of System.in is simply InputStream. The type of System.out, however, is
java.io.PrintStream. A PrintStream supports textual output of most Java
primitive types as well as objects. It also avoids most of the otherwise−ubiquitous
IOExceptions.

Chapter 21 Network Programming 567

21.3.4 Decoration in Action

As we have seen, the four abstract IO classes lack some basic useful features and
methods. Frequently, you would really rather be using one of their non−abstract
subclasses. For example, one very common reader is BufferedReader. Instances of
the BufferedReader class support useful methods such as:

public int read() throws IOException;
public String readLine() throws IOException;

The first of these reads a single character from the input; the second reads an entire line
of input. For a more complete list of BufferedReader methods, see the Java IO
Quick Reference appendix.

To create a BufferedReader, you first need to have a Reader. Java doesn't come
with any predefined Readers, but it does come with a built−in InputStream:
System.in, which reads from the Java console. The following (extremely useful) code
assigns the name myIn to a BufferedReader that gets its input from System.in:

BufferedReader myIn =
 new BufferedReader(new InputStreamReader(System.in));
try {
 System.out.println(“I just read this line: ”
 + myIn.readLine());
} catch (IOException e) {
 System.err.println(“Oops, I couldn't read a line!”);
}

In general, you can cascade the feature types, i.e., take any arbitrary stream and make
another (more featureful) stream out of it. You begin with a particular stream, either
based on an external (non−stream) structure or built in. Below, we will focus on streams
created from a network interface.

21.4 Network Streams: An Example

In this final section, we will revisit the LectorScribe class that we defined above. Using
what we have learned about actual Java streams, we will embellish that class so that it
can be used to communicate with other computers running over the network. To do this,
we will need to add the machinery of network communications: sockets. In Java, sockets
and other network communication classes are implemented in a package called java.net.
These classes are also covered in the Java IO Quick Reference appendix of this book.

568 Chapter 21 Network Programming

21.4.1 Starting from Streams

The following code reproduces the LectorScribe class, above, with a few minor
modifications. First, we have used actual java.io stream classes (in this case, Reader and
Writer) as the stream types. We have also specified String as our MessageType and added
some error messages when IOExceptions are caught.

public class LectorScribe implements Scribe, Animate {

 private Writer out;
 private Reader in;
 private AnimatorThread mover;
 private LectorListener ll;

 public LectorScribe(Writer out, Reader in) {
 this.out = out;
 this.in = in;
 this.mover = new AnimatorThread(this);
 this.mover.start();
 }

 public void act() {
 try {
 this.ll.messageRead(this.in.read());
 } catch (IOException e) {
 System.err.println(“Oops, I couldn't read a line!”);
 }
 }

 public void send(String m) {
 try {
 this.out.write(m);
 this.out.flush(); // (maybe)
 } catch (IOException e) {
 System.err.println(“Oops, I couldn't write a line!”);
 }
 }

 public void addLectorListener(LectorListener ll) {
 this.ll = ll;
 }
}

Recall the logic of this code: A LectorScribe is responsible for reading from and writing
to its streams. This involves continually monitoring the input with an active Thread (in
the act method) as well as being responsive to requests to write to the output (when
send(String) is called from another Thread).

Chapter 21 Network Programming 569

21.4.2 Decorating Streams

But what if you are given an InputStream and an OutputStream rather than a Reader and
a Writer? In this case, we might add another constructor to this class, one which
decorates these byte streams with their char equivalents. Only the additional constructor
is reproduced here.

public LectorScribe(OutputStream out, InputStream in) {
 this(new OutputStreamWriter(out),
 new InputStreamReader(in));
}

Recall that a this() constructor invokes another constructor of the same class. Invoking
new LectorScribe(System.in, System.out) results in the invocation of:

new LectorScribe(new OutputStreamWriter(System.out),
 new InputStreamReader(System.in))

This would create a LectorScribe that writes on demand to the standard output stream and
continually reads from the standard input stream.

21.4.3 Sockets and Ports

Where might you get input and output streams in the first place? The answer depends on
what these streams are supposed to connect you to. For example, if you are reading from
(or writing to) a file, you could use the FileInputStream/FileOutputStream or
FileReader/FileWriter class pairs. In this section, we will explore streams that connect
you to other computers. Java contains a standard library package called java.net that
provides most of the infrastructure for making network connections.

Think back to the tin can telephone example. What we really want is a sort of a place on
the other computer that we can connect to: someplace to “plug in” the tin can telephone.
Computers have a number of such things, called ports, but you won't see them if you look
at the back of a computer. Instead, a port is a virtual place to plug in a special kind of
connection, called a socket.

A socket is an abstraction of actual network connections and protocols. It contains two
streams: one for input, one for output. In other words, it is the virtual equivalent of a
two−way pair of tin can telephones.

To establish a socket connection, you need to run a program at each end (i.e., one
program on each of the two computers that the socket will connect).

570 Chapter 21 Network Programming

 One of these programs “listens” for connection requests; this is called the server
because it is providing the service of enabling socket connections. The server
provides this service on a particular port of its machine. That is, the server needs
to know which port to be watching to see whether anyone is trying to connect.

•

 The other program is called the client, and it contacts the server to open a socket
connection. The client program needs to specify what machine to contact,
typically using the name of that machine, and also what port on that machine to
try to connect to.

•

Remember that the terms client and server are relative to a particular service. In this case,
the server is providing the service of listening for socket connections, while the client is
making use of that service. Once the socket is in place, though, it looks exactly the same
from both ends.

21.4.4 Using a Socket

Using this idea of sockets, we can now read and write across the network. In Java, a
socket is implemented by an instance of the class java.net.Socket. Suppose that we
have one of these Java Sockets and want to read from and write to it using a
LectorScribe.

We already know how to create a LectorScribe if we are given either a Reader and a
Writer, or an InputStream and an OutputStream. A Java Socket has a method to access
each of its streams: getInputStream(), which returns an InputStream, and
getOutputStream(), which returns an OutputStream. If we had a socket — one
end of a virtual two−way tin can telephone — we could access its input and output
streams using these methods. We can accomplish this using yet another LectorScribe
constructor:

public LectorScribe(Socket sock) throws IOException {
 this(sock.getOutputStream(), sock.getInputStream());
}

In creating a LectorScribe for this Socket, we simply extract the streams and use them
to create a LectorScribe on an output and an input stream. Using the remainder of the
LectorScribe code above, we have a simple program that takes a Socket as an argument
and transmits what it reads and writes over the Socket to the user via the Java console.
Note, however, that this constructor risks throwing an IOException. This is because the
Socket might be corrupt and the streams might not be accessible.

A final note on Sockets: Like a stream, a Socket has a close() method. You should
make a point of closing your Socket when you're done with it.

Chapter 21 Network Programming 571

21.4.5 Opening a Client−Side Socket

Now we have code to read and write from a Socket, we need to figure out where to get
a Socket in the first place. As described above, we can get a Socket by connecting to
a server — a machine that is listening for connection requests — on a particular port. We
need to know what machine to connect to, specified by a String corresponding to its
hostname, such as “www−cs101.ai.mit.edu”. We also need to know on what port
the server is listening for our connection. The port is specified by an integer. By
convention, ports numbered below 1024 are reserved for “standard” protocols.
Otherwise, you have fairly free choice of ports.

A java.net.Socket is created by calling its constructor with a String
corresponding to the hostname of the machine you want to connect to and an int
representing the port on that machine where something is listening for connections. So, if
we had this information, we could use the following LectorScribe constructor:

public LectorScribe(String hostname, int port) throws IOException {
 this(new Socket(hostname, port));
}

[Footnote: Note that the constructor for Socket() may throw IOException.]

This would enable us to say, e.g.,

new LectorScribe(“www−cs101.ai.mit.edu”, 8080)

If we put this expression into our public static void main method, running this program
would create a program that connects the user to the machine www−cs101.ai.mit.edu on
port 8080. Anything the user types would be sent to that port on that machine, and
anything that www−cs101.ai.mit.edu writes to port 8080 would be printed on the Java
console. This is the complete program!

21.4.6 Opening a Single Server−Side Socket

Of course, to make the client side of this program work, something has to be listening on
the appropriate port of the appropriate machine. What code should we run on
www−cs101.ai.mit.edu to listen on port 8080?

The port listener code requires another class from the package java.net. This one is
somewhat misleadingly named ServerSocket. A Java program uses a
java.net.ServerSocket to listen for connections. To create a ServerSocket, you
need to specify what port to listen on. Remember that this is the local port — the port on
the machine this code is running on — and you are not making any connections, just
waiting for someone else to contact you. (If someone throws you a pair of tin cans, you

572 Chapter 21 Network Programming

should catch them and use them to communicate.

The port number on which you listen is arbitrary, but it must match the port number on
which the client will try to connect. (The client should also use the hostname of the
computer on which this ServerSocket is running.) Remember that the port number should
be at least 1024.

We will need to add two constructors to LectorScribe. The first simply creates the
ServerSocket and invokes the LectorScribe constructor that takes a ServerSocket as an
argument:

public LectorScribe(int port) throws IOException {
 this(new ServerSocket(port));
}

The action is really in this second constructor. This constructor says “listen on your port.”
The method

public void Socket ServerSocket.accept() throws IOException;

is a blocking method that returns a Socket when a connection has been made:

A ServerSocket's accept() method returns a Socket. Specifically, it waits until some
program tries to connect to that port, then returns its own side of that connection.

public LectorScribe(ServerSocket serv) throws IOException {
 this(serv.accept());
}

This complete LectorScribe is now ready to run on both sides of the network. By having
one main program — on a computer named yourComputerName — run:

new LectorScribe(4321)

and the other run:

new LectorScribe(yourComputerName, 4321)

you can create a simple two−way chat program. The number 4321 is, of course, an
arbitrary choice, but both programs must use the same number.

The complete LectorScribe code is included in the code supplement (as
LectorScribe.html).

Chapter 21 Network Programming 573

21.4.7 A Multi−Connection Server

The accept() method, like an input stream's read method, blocks until there is a
connection ready to accept. So, like a read(), accept() — and this method — may
wait for a very long time before returning. This means that it may be useful to have the
accept() invocation run in its own Thread. We can write a variant on the LectorScribe by
separating the connection listening from the rest of the program.

In fact, we may want to go further. A single application can have several connections
active at once. There is no problem with having multiple connections running over the
same port. A port is simply a place where a ServerSocket can be listening for connection
requests. For these reasons, it is common to write a more sophisticated kind of server
than a simple LectorScribe.

Essentially, the LectorScribe that we have seen so far is run on a Socket, not on a
ServerSocket. An additional class is used solely to listen on the Socket. This class needs
to have its own instruction follower, so it is an animate object. When it accepts a
connection — yielding a Socket — it simply creates a LectorScribe on that Socket.

public class MultiServer implements Animate {

 private ServerSocket serv;
 private AnimatorThread mover;

 public MultiServer(int port) throws IOException {
 this.serv = new ServerSocket(port);
 this.mover = new AnimatorThread(this);
 this.mover.start();
 }

 public void act() {
 try {
 new LectorScribe(this.serv.accept());
 } catch (IOException e) {
 System.err.println(“Failed to establish a connection!”);
 }
 }
}

21.4.8 Server Bottlenecks

The server architecture that we have just described puts one computer in the middle of a
network. This is sometimes called a hub−and−spoke architecture, since all connections
run through the central server, or hub. There are advantages and disadvantages to this
architecture. One of the major potential disadvantages is that the server can be
overwhelmed if it receives more traffic than it can handle. In this case, the server has

574 Chapter 21 Network Programming

become a bottleneck, the difficult point where congestion must be relieved. The good
news is that in a single−server model, upgrading the server is likely to significantly
improve system performance.

Hub−and−spoke architecture is very common in networks. When increased reliability is
needed, there are variant architectures that reduce the reliance on a single potential point
of failure. The most extreme of these is one in which every computer connects with every
other computer (on an as−needed basis). This amounts to a whole lot of LectorScribes
talking with each other, without the added MultiServer code. This kind of architecture is
called peer−to−peer communication, because neither of the participants is particularly
more important. In that case, one plays the role of the server and the other the client only
to establish the socket connection; after that, the two machines are equivalent.

A common variant on the hub and spoke, in which each server is in turn the client of a
super−server (which may itself be a client...) makes for more efficient routing. This is
called a hierarchical architecture. It is the basis of, for example, computer name lookup
(also called domain name service) on the Internet.

Chapter 21 Network Programming 575

Chapter Summary

 An InputStream is a Java abstraction describing an entity from which Things can
be read; an OutputStream is an entity to which Things can be written.

•

 Streams can be used for I/O on the console, files and network connections, as
well as certain Java objects like arrays and strings.

•

 Streams can have features like buffering, filtering, or automatic data formatting.
These features can be cascaded using the appropriate stream class's constructor.

•

 Every Java instantiation has a PrintStream called System.out and an InputStream
called System.in.

•

 ObjectInputStream and ObjectOutputStream are stream types that can be
particularly useful for sending objects across the network.

•

 A Socket is one side of a network connection. It has an InputStream and an
OutputStream. You can create a Socket by specifying the hostname and port to
which you wish to connect.

•

 A ServerSocket is something that can accept connection requests on a particular
port. You can create a ServerSocket, by specifying which port to listen on. A
ServerSocket's accept() method returns a Socket object each time a new
connection is made.

•

 A multithreaded server is an entity that creates a new self−animating object to
handle each connection accepted by its ServerSocket.

•

 Such a server can be a hub for a network, but when it is overloaded, it can also be
a communications bottleneck.

•

576 Chapter 21 Network Programming

Exercises

 Write code to open a file and read it, one line at a time, printing each line to the
standard output.

1.

 Modify the LectorScribe so that it shuts down gracefully. That is, when a stream
throws an exception — e.g., when there is nothing more to read — it should close
its streams and its Socket.

2.

 Modify the MultiServer so that it keeps track of the LectorScribes that it has
created. Add something to the act() method of the MultiServer that sends a
message over the output stream of each LectorScribe when a new connection is
accept()ed. (“Congratulations on your new sibling!”)

3.

 Create a new kind of LectorListener event handler that notifies the MultiServer
whenever one of its LectorScribes reads something from its input stream.

4.

 Combine the answers to the previous two questions so that, when a message is
read by one LectorScribe, it is broadcast to all of the LectorScribes' output
streams. Bonus: Can you avoid sending the message to the initiating client?

5.

Chapter 21 Network Programming 577

578 Chapter 21 Network Programming

Index

© 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java.

This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann
Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at
Franklin W. Olin College (and previously at the Artificial Intelligence Laboratory and the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology).

Permission is granted to copy and distribute this material for educational purposes only, provided the following credit line is
included: © 2002 Lynn Andrea Stein. In addition, if multiple copies are made, notification of this use may be sent to
ipij@mkp.com.

;, 107
+, 158
<=, 164
==, 164
−, 169, 169, 169, 169
+, 79
− operator, 169
abstract, 220, 228, 315
abstract class, 315
abstract method, 138
abstraction, 384
adjectives, 252
agents, 10
AlarmedCounting, 136
alternative, 186, 347
and, 165
animate objects, 249
AnimateObject, 299
applications, 10
argument, 152, 82
arguments, 137
arithmetic operator, 160
arithmetic operators, 158, 159
Arithmetic operators, 171
array, 367, 371, 378
Array Access, 371
array access expression, 371
array construction, 369

mailto:ipij@mkp.com

Array Construction, 371
array construction expression, 369
array element expression of label type, 370
array element of dial type, 370
array for dispatch, 374
Array Initialization, 371
array literal, 371
array member expressions, 370
array type, 368
Array Type, 371
ArrayOutOfBoundsException, 371, 372
Arrays, 342
ascii, 114
assign, 100
assigning, 99
assignment, 155
Assignment expressions, 171
association, 376
atomicity, 544
autodecrement, 160, 169, 171
autoincrement, 160, 169, 171
AutoIncrement and AutoDecrement, 169
backslash, 114
bandwidth, 12
base case, 430
base type of the array, 368
BasicCounter, 134
batch, 15
binary operators, 158
binary (two−argument) arithmetic operators, 161
bits, 113
bitwise−logical operators, 159
block, 180
blocking read, 559
bodies, 220
body, 135, 183, 219
boolean, 107, 111, 114
boolean operators, 165
boot sequence, 5
booting it up, 5
boots up, 5
bottleneck, 574
bottom−up design, 71
bound, 99
braces, 180

580 Index

break statement, 361
break statements, 360
Buffering, 566
bugs, 17
byte, 113, 117
call path, 325
callbacks, 424
called, 136, 231
Capitalizer, 77
Capitalizers, 70
cascaded, 378
cascaded − statements, 186
cascaded if, 349, 350
case clause, 366
caseClause, 366
case−sensitive, 100
catastrophic failure, 321
catch, 319, 329, 331
catch clause, 329, 331
catch clause matches, 331
central control loop, 341, 342
char, 114
character, 114, 81
character escape, 114
Character literals, 114
characters, 111
charAt, 81
CheckBoxes, 463
checked exceptions, 334
choice, 8
class, 216
Class, 217
class, 83
class definition, 219
class name, 157
classes, 151, 215, 89
client, 526
clone(), 302
Cloneable, 302
CloneNotSupportedException, 302
coercion, 160
Coercion, 163
coercion, 256
collection, 368, 378
collection objects, 374

Index 581

Combiner, 70
comments, 139
communication channels, 551
comparators, 164
comparison operators, 159
comparisons, 158
Compound Assignment, 169
compound assignment operators, 169
computer, 7
concatenation, 79
concurrent, 18
condition, 183
conditional, 111, 8
conditional behavior, 343
conditional execution, 183
conditional logic, 351
Conditional statements, 378
Conditionals, 341
conditions, 176
conjunction, 165
Connection, 72
consequent, 183, 344, 347
consequent statement, 344
Console, 96, 98
constant, 154, 255, 356, 359
constant expressions, 354
constant values, 255
constants that are used for their value, 359
“constituting a community of interacting entities.”, 11
constructor, 215, 216, 235, 86
constructor expression, 171
constructors, 219
continue, 362
control loop, 11
coordination among instruction−followers, 3
counter, 134
Counting, 134
CountingMonitor, 299
Coupling, 313
cs101 libraries, 98
cs101.util.Console package, 99
data, 221
data repositories, 249
data repository, 257
dead, 546

582 Index

deadlock, 546
decimal notation, 114
declare, 103, 106
declared, 106, 95
decoration, 565
default, 363, 378
default value, 223
definition, 107, 107, 179
Delayers, 70
design, 16, 249
dial, 116, 94
dial names, 108, 110
disjunction, 165
disk drive, 5
disk server, 526
dispatch, 342
Dispatch, 378
dispatch control, 341
dispatch on case, 354
do loop, 188
document, 139
domain name service, 575
double, 107, 113, 117
double precision, 113
double quote, 114
do/while statement, 188
down−cast, 303
duals, 534
Echo, 311
echo program, 18
else clause, 353
embedded, 378
embedded in an environment, 18
encapsulate, 383
encapsulation, 384
Equality testing, 165
equals(Object), 302
Error, 323, 334
error checking, 323
evaluated, 344
evaluates, 150
evaluating, 176
evaluation for instance−creation expressions, 157
event, 440
event delegation, 464

Index 583

event handlers, 440
event queue, 449
event−driven programming, 440
Exception, 319, 323, 334
exception handling, 322
exceptional circumstances, 320
Exceptional circumstances, 321
executed, 176
executing, 4
Execution of the − statement, 353
explicit cast expression, 162, 164
Explicit cast expressions, 171
expression, 102, 149, 150, 171
expression conditional, 160
expressions, 89
extend Object, 300
extending, 300
Extension, 313
factories, 252
false, 111, 114
field, 221, 85
field access expression, 156, 171
fields, 151, 156, 213, 215, 219, 252
File, 551
file server, 526
final, 255, 255, 355, 356
final fields, 255
final fields., 356
final parameter, 255, 356
final variable, 255, 356
finally, 331, 331
finally clause, 332
float, 113, 117
floating point, 113
floating point literal, 114
floating point numbers, 117
flow of control, 111, 176
footprint, 141, 146, 232
For Statement, 374
getClass(), 302
getMessage, 323, 334
getter, 259
graphical user interface, 133, 343
grouped into mini−programs and given names, 8
guard expression, 303

584 Index

(GUI), 133
GUI, 343
helper procedure, 343
“helper” procedures, 341
hierarchical architecture, 575
high level instruction, 7
hub−and−spoke, 574
if, 111
if statement, 183, 344, 353, 378, 378
if/else, 347
if/else statement, 185
IllegalArgumentException, 323
implement, 220
implementation, 17
Implementation, 313
implementations, 220
implementor, 132
include a default case, 363
increment, 134
Incrementable, 252
incremental program design, 13
incremental program development, 17
index, 371
index set, 376
indexOf, 81
infinite loop, 11
inheritance, 297, 298
initial conditions, 252
inline, 259
inner class, 398
Inner classes, 384
input streams, 552
instance−creation expression, 157
instances, 104, 216
instruction−follower, 150
int, 106, 113
integralExpression, 366
interactive, 18
interactive control loop, 18
interface, 132, 133, 135, 146
interface body, 141
interfaces, 131, 89, 96
invoked, 136, 231
invoking, 79
Java, 7

Index 585

Java console, 98
Java interface, 133, 140
Java operators, 159
Javadoc, 140
keywords, 100
L, 113
l, 113
label, 94
label names, 108, 108
labeled break statement, 361
labeled continue statement, 362
labels, 108
lastIndexOf, 82
latency, 12
layered, 529
Lector, 551, 555
length, 372, 81
length of an array, 371
listeners, 464
literal, 111, 150
literals, 110, 149, 95
livelock, 546
liveness, 15, 546
local state, 85
local variable, 178, 211, 223
local variables, 213
logical conjunction (and), 159
logical disjunction (or), 159
logical negation, 159
logical operations, 158
logical operators, 159
Logical operators, 171
long, 113, 117
loop, 9
loops, 176
lossy, 163
magic numbers, 359
mail server, 526
Math, 262
mechanism for dispatch, 374
member class, 399
members, 219
method, 215, 79, 83
method body, 230
method definition, 229

586 Index

method invocation, 152, 231
Method invocation, 234
method invocation expression, 171
method overloading, 232
method signature, 135, 146, 327
method signatures, 228
method specification, 137
methods, 135, 152, 216, 219, 252
middle manager, 343
model, 463
MouseListener, 472
MouseMotionListener, 472
multiply evaluating an expression, 352
mutators, 259
mutual exclusion, 543
name, 135, 94
Name Droppers, 70
NameDropper, 77
names, 149, 89
Names, 94
naming, 93
narrowing, 163
negation operator, 166
Network−senders, 70
new, 106
newline, 114
NoClassDefFoundError, 323
nouns, 250
null, 109
NullPointerException, 323
numerical analysis, 114
Object, 300
object, 95, 95
object dispatch, 377
object oriented programming languages, 95
object type, 104
object types, 104
objects, 89, 93, 95
object−type, 104
object−type things, 105
obtains a lock, 543
operands, 158
operating system, 5
operator, 158, 158
Operator expressions, 171

Index 587

operator−assignment operators, 159
or, 165
organizational design, 11
output streams, 552
overflow, 113
overloading, 142, 146
overriding, 304
Packages, 383
parameter, 136, 206, 82
parameter specification, 135
parameters, 151, 213, 223
parenthetical expression, 166
peer−to−peer, 575
Pig Latin, 70
PigLatin, 78
pixel, 453
polymorphism, 418
ports, 570
postfix, 169
precedence, 167, 168
predicate, 303, 351
prefix, 169
primitive, 93, 94
primitive types, 104, 112
primitive−type things, 105, 110
privacy, 249
private, 256
private constructors, 257
private methods, 256
Procedural abstraction, 342, 383
procedural abstraction, 385, 9
program, 3
program errors, 17
programmer, 6
programming languages, 6
programs, 4
protected, 257, 308
protecting, 256
protocol, 15
prototyping, 17
public, 257
pull, 531
push, 533
read, 134, 541
Reader, 555

588 Index

reading, 554
real numbers, 117
real time, 15
Rectangle, 220
recursion, 428
recursive case, 431
reference, 94
reference−type names, 119
regression testing, 335
repeated invocation of a method, 352
Repeater, 70, 77
replace, 81
reserved words, 100
Resettable, 141
resource libraries, 249
return, 231, 329
return path, 325
return statement, 191
return type, 135, 137
rule specifications, 135
RuntimeException, 334
scientific notation, 114
scope, 107, 151, 151
scope of a local variable, 223
Scribe, 551, 555
selectors, 259
self−animating objects, 89
semicolon, 107
sequencing, 8
Serializable, 566
server, 526
servers, 10
service, 526
setter, 259
share a reference, 109
shared state, 541
shift operators, 171
short, 103, 113
side effect, 155, 177
side effects, 140
signature, 230, 329
Simple expressions, 171
single quote, 114
single−minded instruction−following, 3
socket, 570

Index 589

software life cycle, 16
specification, 12
standard input, 567
standard output, 567
state, 221
statement, 107
statements, 89
static, 227, 232
static final, 359
static final fields in an interface, 356
static inner class, 399
step through a collection, 373
stream, 552
stream of values, 552
streams, 551
String, 114, 78, 97
String concatenation, 158
strongly typed language, 95
subclass, 302
substring, 80, 80
super, 305
super();, 310
superclass, 302
switch, 359
switch statement, 341, 354, 366, 378
switches as names, 116
symbolic constant, 354
symbolic constants, 341, 355, 359, 378
Synchronization, 541
synchronization failure, 542
synchronized block, 543
synchronized methods, 543
synchronized statement type, 543
syntax, 100, 150, 157, 97
system, 73
tab character, 114
target, 234, 417
test, 111, 183
test expression, 344, 344, 366
testing, 17
the null character, 223
this, 225, 230, 232, 254, 306, 86
throughput, 12
throw, 319, 327, 327, 329
Throwable, 334

590 Index

throwing, 324
Throwing an Exception, 326
Throwing an exception, 327
throws, 135, 327, 327, 329
toLowerCase, 80
top level, 219, 222
top−down design, 71
toString(), 302
toUpperCase, 80
traditional objects, 249
transaction, 544
transaction−safe, 544
Transformers, 71
trim, 80
true, 111, 114
try, 331
try block, 329
try body, 331
try/catch, 329
try/catch/finally, 331
try{}catch(){}finally{}, 331
type, 103, 103, 103, 105, 105, 150
type of a method, 137
Type−of−thing Name−of−thing, 106
types, 218, 89, 89
Types, 93
typing, 93
Ubby Dubby, 70
unary minus operator, 161
unary operators, 158
unicode, 114
unlabeled continue statement, 362
up−cast, 303
user, 73
User interface, 133
user interface, 74
users, 132
value, 150
value−type names, 119
variable, 151
Vector, 304
verbs, 251
view, 463
virtual fields, 261
visibility, 308

Index 591

visibility protectors, 383
void, 192, 229
volatile, 547
web browser, 5
web server, 526, 5
while, 187
white space, 100
widening, 162, 163
write, 541
Writer, 555
writing, 554

592 Index

	Table of Contents
	Part 1 Introduction to Interactive Program Design
	Chapter 1 Introduction to Program Design
	 1.1 Computers and Programs
	 1.2 Thinking Like a Programmer
	 1.3 Programming Primitives, Briefly
	 1.4 Ongoing Computational Activity
	 1.5 Coordinating a Computational Community
	 1.5.1 What Is the Desired Behavior of the Program?
	 1.5.2 Who Are the Entities Who Interact to Produce the Program's Desired Behavior?
	 1.5.3 What Goes Inside Each Entity (How Does It Work)?
	 1.5.4 How Do These Entities Interact?

	 1.6 The Development Cycle
	 1.7 The Interactive Control Loop
	 Chapter Summary
	 Exercises

	Chapter 2 The Programming Process
	Interlude A A Community of Interacting Entities
	 A.1 Introduction: Word Games
	 A.2 Designing a Community
	 A.2.1 A Uniform Community of Transformers
	 A.2.2 The User and the System
	 A.2.3 What Goes Inside

	 A.3 Building a Transformer
	 A.3.1 Transformer Examples
	 A.3.2 Strings
	 A.3.2.1 String Concatenation
	 A.3.2.2 String Methods

	 A.3.3 Rules and Methods
	 A.3.4 Classes and Instances
	 A.3.5 Fields and Customized Parts
	 A.3.6 Generality of the approach

	 Chapter Summary
	 Exercises

	Part 2 Entities and Interactions
	Chapter 3 Things, Types, and Names
	 3.1 Things in Programs
	 3.2 Most Java Things are Objects
	 3.2.1 Doing Things with Objects

	 3.3 Naming Things
	 3.4 Types
	 3.4.1 What a Type Is
	 3.4.1.1 Two Kinds of Types: Primitive Types and Object Types
	 3.4.1.2 Object Types
	 3.4.1.3 What a Type Is: Summary

	 3.4.2 Types of Objects
	 3.4.3 Types of Names
	 3.4.3.1 Declarations and the Type-of-Thing Name-of-Thing Rule
	 3.4.3.2 Definition = Declaration + Assignment

	 3.5 Names for Objects: Label Names
	 3.6 Primitive Types, Literals and Dial Names
	 3.6.1 Literals
	 3.6.2 Primitive Types
	 3.6.3 Names for Primitive-Type Things: Dial Names

	 3.7 A Tale of Things and Names
	 Chapter Summary
	 Exercises

	Chapter 4 Specifying Behavior: Interfaces
	 4.1 Interfaces are Contracts
	 4.1.1 Generalized Interfaces and Java Interfaces
	 4.1.2 A Java Interface Example

	 4.2 Method Signatures
	 4.2.1 Name
	 4.2.2 Parameters and Parameter Types
	 4.2.3 Return Type
	 4.2.4 Putting It All Together: Abstract Method Declaration Syntax
	 4.2.5 What a Signature Doesn't Say

	 4.3 Interface Declaration
	 4.3.1 Syntax
	 4.3.2 Method Footprints and Unique Names
	 4.3.3 Interfaces are Types: Behavior Promises
	 4.3.4 Interfaces are Not Implementations

	 Chapter Summary
	 Exercises

	Chapter 5 Expressions: Doing Things with Things
	 5.1 Simple Expressions
	 5.1.1 Literals
	 5.1.2 Names

	 5.2 Method Invocation
	 5.3 Combining Expressions
	 5.4 Assignments and Side-Effecting Expressions
	 5.5 Other Expressions That Use Objects
	 5.5.1 Fields
	 5.5.2 Instance Creation
	 5.5.3 Type Membership

	 5.6 Complex Expressions on Primitive Types: Operations
	 5.6.1 Arithmetic Operation Expressions
	 5.6.2 Explicit Cast Expressions
	 5.6.3 Comparator Expressions
	 5.6.4 Logical Operator Expressions

	 5.7 Parenthetical Expressions and Precedence
	 Chapter Summary
	 Exercises

	Chapter 6 Statements and Rules
	 6.1 Statements and Instruction-Followers
	 6.2 Simple Statements
	 6.3 Declarations and Definitions
	 6.4 Sequence Statements
	 6.5 Flow of Control
	 6.5.1 Simple Conditionals
	 6.5.2 Simple Loops

	 6.6 Statements and Rules
	 6.6.1 Method Invocation Execution Sequence
	 6.6.2 Return

	 Chapter Summary
	 Exercises

	Interlude B Expressions and Statements
	 B.1 The Problem
	 B.2 Representation
	 B.3 Interacting with the Rules
	 B.4 Paying Attention to the World
	 B.5 Fancy Dot Tricks
	 B.6 Remembering State
	 B.6.1 Fields
	 B.6.2 Fields versus Local Variables

	 Chapter Summary
	 Exercises

	Chapter 7 Building New Things: Classes and Objects
	 7.1 Classes are Object Factories
	 7.1.1 Classes and Instances
	 7.1.2 Recipes Don't Taste Good
	 7.1.3 Classes are Types

	 7.2 Class Declaration
	 7.2.1 Classes and Interfaces

	 7.3 Data Members, or Fields
	 7.3.1 Fields are Not Variables
	 7.3.1.1 Hotel Rooms and Storage Rental
	 7.3.1.2 Whose Data Member Is It?
	 7.3.1.3 Scoping of Fields

	 7.3.2 Static Members

	 7.4 Methods
	 7.4.1 Method Declaration
	 7.4.2 Method Body and Behavior
	 7.4.3 A Method ALWAYS Belongs to an Object
	 7.4.4 Method Overloading

	 7.5 Constructors
	 7.5.1 Constructors are Not Methods
	 7.5.2 Syntax
	 7.5.3 Execution Sequence
	 7.5.4 Multiple Constructors and the Implicit No-Argument Constructor
	 7.5.5 Constructor Functions

	 Chapter Summary
	 Exercises

	Part 3 Refining Designs
	Chapter 8 Designing with Objects
	 8.1 Object Oriented Design
	 8.1.1 Objects are Nouns
	 8.1.2 Methods are Verbs
	 8.1.3 Interfaces are Adjectives
	 8.1.4 Classes are Object Factories
	 8.1.5 Some Counter Code
	 8.1.6 Public and Private

	 8.2 Kinds of Objects
	 8.2.1 Data Repositories
	 8.2.2 Resource Libraries
	 8.2.3 Traditional Objects

	 8.3 Types and Objects
	 8.3.1 Declared Type and Actual Type
	 8.3.2 Use Interface Types
	 8.3.3 Use Contained Objects to Implement Behavior
	 8.3.4 The Power of Interfaces

	 Chapter Summary
	 Exercises

	Chapter 9 Animate Objects
	 9.1 Animate Objects
	 9.2 Animacies are Execution Sequences
	 9.3 Being Animate-able
	 9.3.1 Implementing Animate
	 9.3.2 AnimatorThread
	 9.3.3 Creating the AnimatorThread in the Constructor
	 9.3.4 A Generic Animate Object

	 9.4 More Details
	 9.4.1 AnimatorThread Details
	 9.4.2 Delayed Start and the init Trick
	 9.4.3 Threads and Runnables
	 9.4.4 Thread Methods

	 9.5 Where Do Threads Come From?
	 9.5.1 Starting a Program
	 9.5.2 Why Constructors Need to Return

	 Chapter Summary
	 Exercises

	Chapter 10 Inheritance
	 10.1 Derived Factories
	 10.1.1 Simple Inheritance
	 10.1.2 The java.lang.Object Type
	 10.1.3 Superclass Membership

	 10.2 Overriding
	 10.2.1 The super Expression
	 10.2.2 The Outside-In Rule
	 10.2.3 Problems with Private

	 10.3 Constructors are Recipes
	 10.3.1 The this() Expression
	 10.3.2 The super() Expression
	 10.3.3 Implicit super()
	 10.3.4 Multiple Views

	 10.4 Interface Inheritance
	 10.5 Relationships Between Types
	 Chapter Summary
	 Exercises

	Chapter 11 When Things Go Wrong: Exceptions
	 11.1 Exceptional Events
	 11.1.1 When Things Go Wrong
	 11.1.2 Expecting the Unexpected
	 11.1.3 What's Important to Record

	 11.2 Throwing an Exception
	 11.3 Catching an Exception
	 11.4 Throw versus Return
	 11.5 Designing Good Test Cases
	 Chapter Summary
	 Exercises

	Part 4 Refining Interactions
	Chapter 12 Dealing with Difference: Dispatch
	 12.1 Conditional Behavior
	 12.2 Keywords if and else
	 12.2.1 Basic Form
	 12.2.2 The else Keyword
	 12.2.3 Cascaded if Statements
	 12.2.4 Many Alternatives

	 12.3 Limited Options: switch
	 12.3.1 Constant Values
	 12.3.1.1 Symbolic Constants
	 12.3.1.2 Using Constants

	 12.3.2 Syntax
	 12.3.2.1 Basic Form
	 12.3.2.2 The Default Case
	 12.3.2.3 Variations
	 12.3.2.4 Switch Statement Pros and Cons

	 12.4 Arrays
	 12.4.1 What is an Array?
	 12.4.2 Manipulating Arrays
	 12.4.2.1 Stepping Through an Array Using a for Statement

	 12.4.3 Using Arrays for Dispatch

	 12.5 When to Use Which Construct
	 Chapter Summary
	 Exercises

	Chapter 13 Encapsulation
	 13.1 Design, Abstraction, and Encapsulation
	 13.2 Procedural Abstraction
	 13.2.1 The Description Rule of Thumb
	 13.2.2 The Length Rule of Thumb
	 13.2.3 The Repetition Rule of Thumb
	 13.2.4 Example
	 13.2.5 Benefits of Abstraction

	 13.3 Protecting Internal Structure
	 13.3.1 private
	 13.3.2 Packages
	 13.3.2.1 Packages and Names
	 13.3.2.2 Packages and Visibility

	 13.3.3 Inheritance
	 13.3.4 Clever Use of Interfaces

	 13.4 Inner Classes
	 13.4.1 Static Classes
	 13.4.2 Member Classes
	 13.4.3 Local Classes and Anonymous Classes

	 Chapter Summary
	 Exercises

	Chapter 14 Intelligent Objects and Implicit Dispatch
	 14.1 Procedural Encapsulation and Object Encapsulation
	 14.2 From Dispatch to Objects
	 14.2.1 A Straightforward Dispatch
	 14.2.2 Procedural Encapsulation
	 14.2.3 Variations
	 14.2.4 Pushing Methods Into Objects
	 14.2.5 What Happens to the Central Loop?

	 14.3 The Use of Interfaces
	 14.4 Runnables as First Class Procedures
	 14.5 Callbacks
	 14.6 Recursion
	 14.6.1 Structural Recursion
	 14.6.1.1 A Recursive Class Definition
	 14.6.1.2 Methods and Recursive Structure
	 14.6.1.3 The Power of Recursive Structure

	 14.6.2 Functional Recursion

	 Chapter Summary
	 Exercises

	Chapter 15 Event-Driven Programming
	 15.1 Control Loops and Handler Methods
	 15.1.1 Dispatch Revisited

	 15.2 Simple Event Handling
	 15.2.1 A Handler Interface
	 15.2.2 An Unrealistic Dispatcher
	 15.2.3 Sharing the Interface

	 15.3 Real Event-Driven Programming
	 15.3.1 Previous Examples
	 15.3.2 The Idea of an Event Queue
	 15.3.3 Properties of Event Queues

	 15.4 Graphical User Interfaces: An Extended Example
	 15.4.1 java.awt
	 15.4.2 Components
	 15.4.3 Graphics
	 15.4.4 The Story of paint
	 15.4.5 Painting on Demand

	 15.5 Events and Polymorphism
	 Chapter Summary
	 Exercises

	Chapter 16 Event Delegation and java.awt
	 16.1 Model/View: Separating GUI Behavior from Application Behavior
	 16.1.1 The Event Queue, Revisited

	 16.2 Reading What the User Types: An Example
	 16.2.1 Setting Up a User Interaction
	 16.2.2 Listening for the Event
	 16.2.3 Registering Listeners
	 16.2.4 Recap

	 16.3 Specialized Event Objects
	 16.4 Listeners and Adapters: A Pragmatic Detail
	 16.5 Inner Class Niceties
	 Chapter Summary
	 Exercises

	Part 5 Systems of Objects
	Chapter 17 Models of Communities
	Chapter 18 Interfaces and Protocols: Gluing Things Together
	Chapter 19 Client-Server Interaction Patterns
	 19.1 What Is a Client-Server Interaction?
	 19.2 Postal Services: An Example
	 19.2.1 A Server Can Provide a Variety of Services
	 19.2.2 You Can Have More Than One Provider of a Given Service
	 19.2.3 Services Can Be Layered
	 19.2.4 Roles Are Relative to a Service

	 19.3 Implementing Client-Server Interactions
	 19.3.1 Client Pull
	 19.3.1.1 Locating the Server
	 19.3.1.2 Client Pull Tradeoffs

	 19.3.2 Server Push
	 19.3.2.1 Registering with the Server
	 19.3.2.2 Server Push Tradeoffs

	 19.4 The Nature of Duals
	 19.5 Pushing and Pulling Together
	 19.5.1 Passive Repository
	 19.5.2 Active Constraint

	 Chapter Summary
	 Exercises

	Chapter 20 Synchronization
	 20.1 An Example of Conflict
	 20.2 Synchronization
	 20.3 Java's synchronized Declaration
	 20.3.1 Synchronizing Methods
	 20.3.2 Synchronizing Blocks

	 20.4 What Synchronization Buys You
	 20.5 Safety Rules
	 20.6 Deadlock
	 20.7 Obscure Details
	 20.7.1 Synchronization and Local Copies of State
	 20.7.2 Synchronized Blocks and Lock Object References

	 Chapter Summary
	 Exercises

	Chapter 21 Network Programming
	 21.1 A Readable Writeable Channel
	 21.1.1 Tin Can Telephones
	 21.1.2 Streams

	 21.2 Using a Channel
	 21.2.1 Streams for Writing
	 21.2.1.1 Flushing Out the Stream
	 21.2.1.2 A Scribe Example

	 21.2.2 Streams for Reading
	 21.2.2.1 Reading and Blocking
	 21.2.2.2 A Lector Example

	 21.2.3 Encapsulating Communications

	 21.3 Real Streams
	 21.3.1 Abstract Stream Classes
	 21.3.2 Decorator Streams
	 21.3.3 Stream Sources
	 21.3.4 Decoration in Action

	 21.4 Network Streams: An Example
	 21.4.1 Starting from Streams
	 21.4.2 Decorating Streams
	 21.4.3 Sockets and Ports
	 21.4.4 Using a Socket
	 21.4.5 Opening a Client-Side Socket
	 21.4.6 Opening a Single Server-Side Socket
	 21.4.7 A Multi-Connection Server
	 21.4.8 Server Bottlenecks

	 Chapter Summary
	 Exercises

	Index

