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ABSTRACT

Selection of run-time parametersis a critical step in the application of genetic algorithms.

Numerous investigations have discussed parameter set selection, both theoretically and em-
pirically. Theoretical work has focused on the choice of population size [7, 8, 9, 13, 16],
while empirical studies cover a wide range of GA parameters [3, 4, 10, 15]. Theory suggests
population sizes which increase exponentially with string length. The available experimental

data suggests small populations perform consistently well, but the test problems are limited to

small string lengths. Thus, we still do not have a complete understanding of how parameters
should be chosen, especially for problems with large string lengths.

This study extends Schaffer’s results by performing a similar empirical analysis of GA
parameters on a real-world application, with longer string lengths and a very large number

of local optima. Relationships between population size, mutation rates, and crossover rates
similar to those reported by Schaffer are shown.

1. Introduction

Selecting run-time parameters is notably the most
difficult part of successfully applying genetic algo-
rithms to search and optimization problems. Sev-
eral investigations have discussed parameter set se-
lection both theoretically and through experimental
analysis. Theoretical work is chiefly aimed at the
choice of population size [7, 8, 9, 13, 16], and pro-
vides conflicting guidelines. Goldberg has argued
that extremely small populations may be warranted
for serial SGAs [8], but according to more recent
theoretical results, the population size necessary
to statistically guarantee correct decisions increases
with string length [9].

Empirical studies covering a wide range of GA
parameters and combinations thereof (e.g. [3, 4, 10,
15]) suggest that small populations perform consis-
tently well across a range of problems. One of the
most comprehensive empirical analyses of parame-
ter settings is that of Schaffer et. al. [15]. Schaffer

uses a set of ten test functions, including De Jong’s
five-function test suite. The study identifies ranges
of population size, crossover rates, and mutation
rates that exhibit good ounline performance over the
range of test functions. It also evaluates the effects
of one- and two-point crossover and finds that the
latter is always at least as good as the former when
considering online performance. Table 1 lists the
parameters suggested by Schaffer and those pro-
posed earlier by De Jong [3] and Grefenstette [10].

Table: 1: Comparison of Empirically Determined GA Pa-
rameter Settings

Population Crossover Mutation
Author Size Rate Rate
Schaffer 20 - 30 0.75 - 0.95 | 0.005—-0.01
De Jong 50 — 100 0.60 0.001
Grefenstette 30 0.95 0.01

This study extends Schaffer’s work by perform-
ing a similar empirical analysis of GA parameters.
His study used pedagogical test problems with rel-



atively short string lengths compared to those re-
quired by our problem domain. Inlight of theory in-
dicating population size should grow exponentially
with string length, the applicability of Schaffer’s
results to our real-world application, with signifi-
cantly longer string lengths, is unclear. Addition-
ally, the number of local optima in our application
far exceeds the number found in any of the test
problems.

2. Background

We are interested in the performance of GAs ap-
plied to the minimization of polypeptide (protein)
energies. The energy function is characteristi-
cally non-linear and contains many local optima
[2]. The primary determinants of a protein’s three-
dimensional structure, and thus the energetics of
the system, are its independent dihedral angles [17].
Our GA operates on individuals which encode these
dihedral angles [6], which necessitates string lengths
consderably larger than those used by Schaffer
(e.g. 240 for the relatively small protein [Met]-
Enkephalin).

This application illustrates a difficulty with ex-
isting theoretical population sizing guidelines. For
example, Goldberg [9] shows that a population size
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is sufficient to ensure a specified level of confidence
in building block decision making, where we have
omitted additional terms which account for noisy
operators,

¢ is a function of the confidence level «,
02,.s(m — 1) is the fitness variance (m = [/k),
[ is the string length,

k is the estimated order of deception,

d is the signal difference we wish to detect, and

x 18 the cardinality of the encoding alphabet.

Population sizes suggested by Equation 1, together
with both the following conservative assumptions:

1% sampling error is allowed (o = 0.01, ¢ = 6),
the signal difference is d = 0.1,

the estimated order of deception is k = 5,

the maximum energy is foae ~ 752 - 10,

the minimum energy is fiin =~ 0,

and each of three assumptions regarding the fitness
variance:
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Table: 2: Theoretical Population Size Required for Optimal
Solution Convergence of [Met]-enkephalin

Variance Calculation Parameters | Population
Assumption I X a2 s Size
Maximum 240 2 1.65x 107 2.98 x 10%°
Estimated 240 2 9.20 x 108 1.66 x 10%°
Minimum 240 2 8.95x 107*% | 1.62 x 104

are summarized in Table 2. The best case (mini-
mum variance) calculation indicates no population
is required. This is clearly not a useful result. The
other cases also do not provide useful results be-
cause the computational cost associated with the
resulting population sizes is beyond our capability
to implement.

Alternatively, the empirically determined pa-
rameters suggested by De Jong, Goldberg, or Schaf-
fer could be used (Table 1). However, each of these
recommendations are based on experiments using
pedagogical functions with comparatively short en-
codings and relatively few local optima. The large
string lengths required for this application, as well
as the large number of local optima present in the
fitness landscape, bring into question the applica-
bility of previous experimental findings.

In the next section, we describe experiments
similar to Schaffer’s to determine appropriate pa-
rameter settings for the [Met]-Enkephalin energy
minimization problem. In Section 4 we present the
results of these experiments. Section b summarizes
the paper and presents conclusions.

3. Experiment Design

The following experiments are modeled after those
described by Schaffer [15]. They are designed
to identify the ranges of parameter settings con-
ducive to good GA performance for an appli-
cation with large string lengths and many lo-
cal optima such as the energy minimization
of [Met]-enkephalin. We consider population
sizes m € {10, 20,30, 50,100,200}, mutation rates
pm € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}, and
crossover rates p, € {0.05,0.15,0.25,...,0.95}.
With the exception of using two-point crossover
exclusively and regular binary encoding instead of
gray code, all controls are set exactly as in Schaffer’s
study. A complete factorial design for the 420 re-
maining parameter combinations is performed, and
ten repetitions with different random number seeds
are run for each combination.

Our objective function, which we seek to mini-

mize, is the CHARMM [1] energy function
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where the four terms represent the energy due to
bond stretching, bond angle deformation, dihedral
angle deformation, and non-bonded interactions re-
spectively.

The particular biomolecule investigated here is
the pentapeptide [Met]-enkephalin. This molecule
is chosen because its native conformation is known
and it has been used as a test problem for many
other energy minimization investigations (e.g. [11,
12]).

The encoding used is an affine mapping of each
dihedral angle (ranging from —180° to 180°) into
10 consecutive bits. This encoding yields approx-
imately a third of one degree precision. Twenty-
four dihedral angles determine [Met]-enkephalin’s
structure, hence the string length is 240.

Because the simple GA does not reliably find the
accepted global optimum using the CHARMM en-
ergy function, our definition of “doing well” differs
from Schaffer’s. We choose the following definition
to closely approximate his: at least 10% (42) of the
cells in the design locate a value within 10 kcal/mol
of the best known solution (-35.1155 kcal/mol) at
least 50% of the time (5 out of 10 repetitions) [15].
The raw data is analyzed using the Kruskal-Wallis
test to identify the members of the best online pool.
Test cells (parameter set combinations) belong to
the best online pool if their performance cannot be
statistically distinguished from the best performing
cell.

The experiments are performed using the 1990
version of GENESIS running on a SPARC10 work-
station. The generation gap and scaling window
parameters are set to 1 and the elitist strategy is
used. To guarantee that our online performance
criteria is met, the maximum total trials is set to

10,000.

4. Results

Table 3 lists the 23 members of the best online pool
starting with the settings that exhibit the best av-
erage online performance. Cases with normalized
mean online performance (NMOP) near 1 corre-
spond to prematurely converged GAs, while cases
with NMOP near 0 correspond to effective search.
The Kruskal-Wallis statistic, calculated from the
raw sample data, is h = 31.691, which is less than
the critical value of the Chi-square distribution at
the a < .05 significance level. Thus we accept the

Table: 3: Best Online Pool

Mean

Population  Crossover Mutation  Online
Size Rate Rate Performance
10 0.75 0.005 0.014678
10 0.85 0.005 0.014678
10 0.95 0.005 0.014920
20 0.95 0.002 0.015697
20 0.65 0.002 0.015831
20 0.75 0.002 0.017045
10 0.55 0.005 0.017276
10 0.65 0.005 0.017276
20 0.85 0.002 0.017567
20 0.35 0.002 0.017919
30 0.15 0.002 0.018720
20 0.25 0.005 0.019704
20 0.45 0.002 0.020177
10 0.15 0.005 0.021270
10 0.25 0.005 0.021270
20 0.55 0.002 0.021707
30 0.05 0.002 0.022144
20 0.55 0.005 0.022557
10 0.05 0.005 0.022617
20 0.15 0.002 0.022739
10 0.35 0.005 0.023407
10 0.45 0.005 0.023407
20 0.25 0.002 0.023686

Population size = 10
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Fig. 1: NMOP (Population Size = 10)

null hypothesis and conclude that these 23 param-
eter settings exhibit the same online performance.

Figures 1 through 6 show the average online
performance for all 420 parameter set combina-
tions. The diamonds mark the locations of the
members of the best online pool. The results show
relationshiops between population size, mutation
rates, crossover rates, and NMOP similar to those
reported by Schaffer [15]. Most evident is a very
strong inverse relationship between population size
and mutation rate to achieve good NMOP. In con-
trast, thereis no evidence of any strong relationship
between population size and crossover probability
to achieve good NMOP.

Figures 1 thru 3 show premature convergence is
highly likely when the mutation rate is too low with
respect to population size. Optimal GA perfor-
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Fig. 3: NMOP (Population Size = 30)

mance (NMOP near 0) occurs when the mutation
rate is matched appropriately with population size.
For mutation rates greater than the optimal value,
the GA performs successively more random search.

5. Conclusions

The results of Section 4 suggest the following
meta-level algorithm for choosing optimal popula-
tion size/mutation rate combinations and obtaining
good GA performance:

1. Choose a relatively small population size (10-
30).

2. Start with a very small mutation rate (one

that will make the GA converge prematurely.

Run the GA.

When convergence is detected, stop.

Increase the mutation rate slightly.

Repeat from step 3 until you have exhausted

the preset number of function evaluations.

o Ot

The parameter settings that enable the SGA to
perform the best optimization of [Met]-enkephalin’s

Population size = 50
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Fig. 4: NMOP (Population Size = 50)

Population size = 100
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Fig. 5: NMOP (Population Size = 100)

energy potential fall very close the ranges observed
by Schaffer for general function optimization [15].
From these results we conclude that we’'ve ob-
served “good” SGA performance on this optimiza-
tion problem. The results also confirm that choos-
ing a population size, mutation rate, and crossover
rate within the ranges specified by Schaffer (10—
30, 0.005-0.1, 0.65-0.95) is a good starting point,
even for an application with a large string length
and many local optima. SGA online performance
has been shown to be extremely sensitive to the
combined choice of population size and mutation
rate. Finally, an algorithm has been proposed that
should find good mutation rates with relatively lit-
tle computational cost when small population sizes
are used. The performance of this algorithm will
be the subject for future investigation.
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