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ABSTRACT

Efforts to predict polypeptide structures nearly always
assume that the native conformation corresponds to the
global minimum free energy state of the system. Given
this assumption, a necessary step in solving the problem
is the development of efficient global energy minimiza-
tion techniques. We describe a hybrid genetic algorithm
which incorporates efficient gradient-based minimiza-
tion directly in the fitness evaluation, which is based
on a general full-atom potential energy model. The
algorithm includes a replacement frequency parameter
which specifies the probability with which an individual
is replaced by its minimized counterpart. Thus, the al-
gorithm can implement either Baldwinian, Lamarckian,
or probabilistically Lamarckian evolution.

We also describe experiments comparing the effective-
ness of the genetic algorithm with and without the local
minimization operator, with various probabilities of re-
placement. The experiments apply the techniques to
the minimization of the CHARMM potential for [Met]-
Enkephalin.

When fitness proportionate selection is used, the
Baldwinian, Lamarckian, and probabilistically Lamar-
ckian approaches obtain better energies (and better
basins of attraction) than the standard genetic algo-
rithm. This suggests that the low-energy local minima
in polypeptide energy landscapes occur sufficiently reg-
ularly to benefit from the proposed hybrid approaches.
When tournament selection is used, the results are qual-
itatively similar, except that the hybrid approaches are
prone to premature convergence. Increasing replace-
ment frequency reduces the tendency toward premature
convergence for the experiments performed here.

1 INTRODUCTION

The prediction of an arbitrary polypeptide’s native con-
formation (i.e. molecular structure) given ounly its amino
acid sequence is beyond current capabilities, but has
numerous potential applications [3]. This structure pre-
diction problem is commonly referred to as the protein
folding problem. Efforts to solve it nearly always assume
that the native conformation corresponds to the global
minimum free energy state of the system. Given this
assumption, a necessary step in solving the problem is
the development of efficient global energy minimization
techniques. This is a difficult optimization problem be-
cause of the non-linear and multi-modal nature of the
energy function. The pentapeptide [Met]-Enkephalin,
for example, is estimated to have more than 10! lo-
cally optimal conformations. Energy minimization is
discussed in slightly more detail in Section 2. Also,
Vésquez et al. [27] recently reviewed the literature of



polypeptide conformational energy calculations.

One class of optimization algorithms which has been
applied to the energy minimization problem is that of
genetic algorithms (GAs), which are described elsewhere
(e.g. Goldberg [8], Holland [10], or Michalewicz [16]).
The energy models to which GAs have been applied
vary from lattice representations [4, 26] to simplified
continuum proteins [11, 12, 22, 23], fixed backbones [20,
25], polypeptide-specific full-atom models [13, 15], and
general full-atom models [6, 20].

In some cases (e.g. [13, 25]), the genetic algorithm
performs a search of conformations constructed from
a library of frequently occurring locally optimal single
residue conformations (rotamers). This approach may
be viewed as a sequentially hybrid approach, in which
efficient local optimization of single residue conforma-
tions precedes global optimization via genetic algorithm
of the overall polypeptide conformation.

Similarly, McGarrah and Judson [15] use a build-up
approach including step-wise local minimization to con-
struct their initial population. Their hybrid algorithm
also periodically performs local minimization, and uses
the resulting energies as the fitnesses of the correspond-
ing individuals. The individuals are never altered fol-
lowing the local minimization. This is in contrast to one
of the algorithms studied earlier by Judson et al. [11] in
which individuals are always replaced by their locally
optimized structures. Unger and Moult [26] propose a
hybrid, similar to the latter, in which each individual
undergoes 20 steps of simulated annealing before selec-
tion is performed.

Here we describe a hybrid genetic algorithm which in-
corporates eflicient gradient based minimization directly
in the fitness evaluation, which is based on a general
full-atom potential energy model (Section 2). The al-
gorithm includes a replacement frequency parameter p,
which specifies the probability with which an individual
is replaced by its minimized counterpart. Thus, the al-
gorithm can implement either Baldwinian (p, = 0) or
Lamarckian (p,, = 1) evolution [28], or more generally
probabilistically Lamarckian (0 < p,. < 1) evolution.
We also describe experiments comparing the effective-
ness of the genetic algorithm with and without the local
minimization operator, and with various probabilities of
replacement for the algorithm with the local minimiza-
tion operator (Section 3). Conclusions are presented in
Section 4, and Section 5 discusses directions for future
research.

2 METHODOLOGY

In this section we discuss the objective function asso-
ciated with our polypeptide energy minimization ap-
plication (Section 2.1) as well as the encoding scheme
(Section 2.2). We then discuss the local minimization

technique (Section 2.3) which uses the analytical gradi-
ent. We outline the derivation of the gradient in Sec-
tion 2.4. Finally, we discuss the hybridization of the lo-
cal minimization technique with the genetic algorithm
(Section 2.5).

2.1 Objective Function

Our objective function, which we seek to minimize, is

based on the CHARMM [2] energy function
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where the five terms (which we denote Ez, E4, Ep,
Ep, Env) represent the energy due to bond stretch-
ing, bond angle deformation, dihedral angle deforma-
tion, non-bonded interactions, and 1-4 interactions, re-
spectively. Specifically,

e B is the set of bonded atom pairs,
e A is the set of atom triples defining bond angles,

¢ D is the set of atom 4-tuples defining dihedral an-
gles,

e N is the set of non-bonded atom pairs,

e N’ is the set of 1-4 interaction pairs,

e 7,; is the distance between atoms ¢ and j,

¢ ;5 is the angle formed by atoms 7, j, and k,

o &1 is the dihedral angle formed by atoms s, j, k,
and [,

e ¢; is the partial atomic charges of atom z,

o the K, s, 7’5, Ko,,’s, Ocq’s, Kg,.,'s, Yijr's,
Aij’s, Bij’s, and ¢ are empirically determined con-
stants (taken from the QUANTA parameter files).

The primary determinants of a protein’s 3-D structure,
and thus the energetics of the system, are its indepen-
dent dihedral angles [27]. Our genetic algorithm op-
erates on individuals which encode these dihedral an-
gles [6]. In Equation 1, E is expressed as a function



of both the internal coordinates (bond lengths 7;; for
(1,7) € B, bond angles ©;;1, and dihedral angles ®;;11)
and the interatomic distances r;; for (4,7) € N UN'.
Thus, in order to calculate E (and hence the fitness) for
the conformation encoded by an individual, it is neces-
sary to calculate its Cartesian coordinates from its in-
ternal coordinates. We use the transformation method
proposed by Thompson [24]. This method requires at
most one 4 X 4 matrix multiplication per atom per con-
formation.

2.2 Encoding Scheme

Each individual is a fixed length binary string encod-
ing the independent dihedral angles of a polypeptide
conformation. The decoding function used is the affine
mapping D : {0,1}'" — [—7, 7] of 10 bit subsequences
to dihedral angles such that

10
D(al,az,...,alo):—7r—|—27r2a]-2_j. (2)

i=1

This encoding yields a precision of approximately one
third of one degree.

The particular biomolecule investigated here is the
pentapeptide [Met]-enkephalin. This molecule is chosen
because it has been used as a test problem for many
other energy minimization investigations (e.g. [13, 17]),
and its minimum energy conformation is known (with
respect to the ECEPP /2 energy model). Twenty-four
dihedral angles determine [Met]-enkephalin’s structure,
hence the string length is 240.

2.3 Local Minimization

The objective function defined by Equation 1 is such
that all of its second partial derivatives exist and are
continuous almost everywhere.! We consider three lo-
cal minimization techniques which exploit to varying
degrees this smoothness property and the ready avail-
ability of software [19, pp. 422, 426].

1. First derivative method. Apply an appropriate
first derivative method (e.g. conjugate gradient or
quasi-Newton) directly to the local minimization of

E.

2. Critical point method. Apply a first derivative
method to the minimization of ||VE|| (or ||V E]?).
This is equivalent to solving for a point for which
VE =0, 1i.e. a critical point of E.

3. Exact second derivative method. Apply either
Newton’s method or conjugate gradient with the
exact Hessian to the minimization of E.

1That is, for each derivative the set of discontinuities is count-
able. It is in fact finite.

The first derivative method is the easiest of the three to
implement, because it does not require second deriva-
tives and it uses readily available local minimization
software. It is also guaranteed to find a local minimum
(as opposed to a critical point). This method converges
quickly for our energy function. For the application to
[Met]-Enkephalin, convergence to within 0.1 kcal/mol
typically occurs in five or fewer steps for individuals in
the initial population and only one or two steps for sub-
sequent individuals.

The critical point method also uses readily available
local minimization software, but it does require both
the first and second derivatives. It also may find either
a local minimum, a local maximum, or a saddle point.
It is an interesting question whether the possibility of
the latter events is disadvantageous. Their occurrence
indicates that the GA individual being evaluated is in
some sense closer to a maximum (or saddle point) than
to a local minimum. This information might be useful
in directing the GA search. We have not investigated
this method experimentally.

Software implementing the exact second derivative
method is not as readily available, and the method re-
quires both the first and second derivatives. It is guar-
anteed to find a local minimum. We also have not ex-
perimented with this method.

Combinations and variations of these methods are
possible, such as beginning with conjugate gradient and
then transitioning to quasi-Newton. Also, the termina-
tion criteria may depend on either the number of iter-
ations or a convergence tolerance, which may be mea-
sured in dihedral angle space, energy, or both. In the
remainder of the paper, we consider only the first deriva-
tive method based on conjugate gradient, terminating
after a single step. This method is less computationally
expensive than one in which a full minimization is per-
formed for each individual, but retains the benefits of
the hybrid approach.

We use a readily available implementation of conju-
gate gradient [19], except that we modify the bracketing
procedure used in the line minimizations. The stan-
dard bracketing procedure (mymnbrak.c) assumes that
the domain of each of the independent variables is the
set of all real numbers, whereas our independent vari-
ables assume values only in the interval [—x, 7]. Conse-
quently, the intervals produced by the standard proce-
dure typically are not limited to the basin of attraction
in which the encoded conformation lies. Our method
heuristically corrects this problem by choosing an inter-
val over which no dihedral angle varies by more than
%- Neglecting non-bonded interactions, this guarantees
that the bracketed interval is contained in the confor-
mation’s basin of attraction, and that it contains the
local minimum along the direction of minimization.



2.4 Analytical Gradient

Because we vary only the dihedral angles, we have
VEg=VE4=0. (3)

Thus, the components of the gradient are given by the
sums of the partial derivatives of Ep, Ea, and En
with respect to the dihedral angles. In our application
the constants ;i € {0, 7} for all 4, j, k,and . Thus,
the partial derivatives of Fp may be calculated straight-
forwardly as

OEp
0P i1

= Ik Ke,;,, sin(nirPajr) (4)

for (4,4, k,1) € D and zero otherwise, where the positive
sign is taken for 7;;z1 = 7 and the negative for ;;z; = 0.
The partial derivatives of Enr and Ear are obtained by
twice applying the chain rule [7]. For each (a,b,¢,d) €
D, we have
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where (2;,vs,2;) and (z;,y;,2z;) are the Cartesian coor-
dinates of atoms ¢ and j respectively. For each (i,7) € N
we have

3= (e —2)? + (9 —y)? + (z — z)*. (7)
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and similarly for the partial derivatives with respect to
Yi,¥j, %, and z;. Combining Equations 5, 6, 7, and
8 yields the required derivatives of F s as functions of
the atoms’ Cartesian coordinates and the partial deriva-
tives thereof with respect to the dihedral angles. We use
Thompson’s method [24] to calculate the partial deriva-
tives of the Cartesian coordinates with respect to the
dihedral angles. The derivatives of Fr are obtained
similarly except for the leading factor of % and the set
over which the summation is taken.

2.5 Hybrid Genetic Algorithm

In the context of constrained optimization problems,
Orvosh and Davis [18] propose replacing infeasible indi-
viduals by their repaired counterparts with probability
pr = 0.05. Pseudocode for this algorithm is shown in
Figure 1. This algorithm may be viewed as probabilis-

initialize();
for (gen=0 ; gen < max_gen; gen++){
for (i=0 ; i < pop_size ; i++) {
temp = poplil;
local_min(temp);
popl[i] .fitness = temp.fitness;
if (Rand() < p_r)
popl[i]l = temp;
}
select();
recombine();
mutate();

Figure 1: Probabilistically Lamarckian genetic algo-
rithm pseudocode

tically Lamarckian. Alternatively, one may view the
local minimization operator as a repair operator in the
sense that it maps individuals to the “feasible region,”
where the nonlinear equality constraint to be satisfied

is VE = 0.

3 RESULTS

In this section we present the results of experiments
in which we empirically compare the minimum ener-
gies found by the standard genetic algorithm (denoted
SGA), the SGA followed by one step of conjugate gra-
dient minimization (denoted SGA+1CG), and proba-
bilistically Lamarckian genetic algorithms using various
replacement probabilities p,, € {0,0.05,0.10,1.00} (de-
noted Baldwinian, p, = 0.05, p,, = 0.10, and Lamar-
ckian, respectively). The experiments are performed
using a modification of the 1990 version of GENESIS
running on SPARC workstations. The input parame-
ters are as given in the typical input file shown in Fig-
ure 2. The minimum energies obtained in each gener-
ation, averaged over 5 runs per algorithm, are shown
in Figure 3, except those for SGA+1CG. The results
for the latter are identical to those for the SGA except
in the final generation. The probabilistically Lamarck-
ian genetic algorithms quickly find substantially lower
energy conformations than the SGA, most notably the
purely Lamarckian algorithm. The means and standard
deviations of the final generation minimumn energies are



Experiments = 1
Total Trials = 50000
Population Size = 50
Structure Length = 240
Crossover Rate = 0
Mutation Rate = 0.
Generation Gap = 1.0
Scaling Window = 1
Report Interval = 1
Structures Saved = 1
Max Gens w/o Eval = 10
Dump Interval = 0
Dumps Saved = 0
Options = ce
Random Seed = 987654321

Figure 2: Typical GENESIS run time parameter file
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Figure 3: Average minimum energy vs. generation using
fitness proportionate selection

shown in Table 1.

The SGA+1CG algorithm results in slightly lower fi-
nal energies than the SGA. The probabilistically Lamar-
ckian algorithms obtain final energies which are sig-
nificantly lower than those of the SGA+1CG at the
0.005 level of significance, as determined by the Kruskal-
Wallis H Test [1]. The final energies obtained by the
various probablistically Lamarckian algorithms in these
experiments are not different from each other at any
interesting level of statistical significance.

Examination of the distributions of energies (not
shown) indicates that in each generation, most individ-
uals have energies close to the best individual, but that
there are a few individuals with much larger energies.
This causes most individuals to have very similar fit-
nesses, thereby reducing selective pressure. Thus, we

Table 1: Final generation minimum energies (kcal/mol)
using fitness proportionate selection

|| Algorithm || Mean | Std. Dev. ||
SGA -22.46 1.10
SGA+1CG || -22.89 1.62
Baldwinian || -25.61 2.22
pr = 0.05 -26.41 1.52
pr = 0.10 -28.37 2.00
Lamarckian || -28.23 1.66
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Figure 4: Average minimum energy vs. generation using
tournament selection

also perform the experiments using binary tournament
selection variants of each of the algorithms (c.f. [15]).
Our implementation of tournament selection creates the
new population in two identical steps, each of which con-
sists of randomly pairing the individuals in the old pop-
ulation and including the more fit of each pair in the new
population. Thus, each individual in the old population
participates in exactly two tournaments, and the pres-
ence of high energy individuals in the population does
not prevent discrimination between low energy individ-
uals. The minimum energies obtained via tournament
selection are shown in Figure 4 and in Table 2.

Again, the SGA+1CG algorithm results in slightly

Table 2: Final generation minimum energies (kcal/mol)
using tournament selection

|| Algorithm || Mean | Std. Dev. ||
SGA -21.85 2.50
SGA+1CG || -21.91 2.48
Baldwinian || -18.47 2.43
pr = 0.05 -26.90 2.08
pr = 0.10 -27.26 1.07
Lamarckian || -30.05 2.75




Table 3: Number of trials performed prior to obtaining
99% convergence using tournament selection
|| Algorithm || Mean | Std. Dev. ||

SGA 5545 2486
Baldwinian 2562 573
p, = 0.05 15031 5815
p, = 0.10 12964 2472

lower final energies than the SGA. In contrast to
the results for fitness proportionate selection, the fi-
nal energies obtained by the probabilistically Lamar-
ckian strategies are as a group not lower than those
obtained by the SGA at any interesting level of statis-
tical significance.? This is primarily due to premature
convergence, which is most notable in the Baldwinian al-
gorithm and absent in the purely Lamarkian algorithm.
The latter obtained between 90.3% and 96.0% conver-
gence at 50000 trials. The mean and standard deviation
of the number of trials performed by the remaining al-
gorithms prior to obtaining 99% convergence is shown
in Table 3.

The increased selective pressure of tournament selec-
tion causes the Baldwinian algorithm to abandon higher
energy basins of attraction before it produces individu-
als representing the associated local minima, resulting
in a loss of apparently critical information. This oc-
curs to a lesser degree in the SGA and the probabilisti-
cally Lamarckian algorithms for p,. € {0.05,0.10}. The
Baldwinian algorithm is the only one for which the final
energies obtained using fitness proportionate selection
and tournament selection are significantly different, the
latter being higher at the 0.01 level of significance.

4 CONCLUSIONS

While Lamarckian genetic algorithms obtain good so-
lutions for some applications (e.g. [11]), it has also
been shown that Baldwinian algorithms are superior for
other applications [28], while probabilistically Lamarck-
ian approaches are superior for others [18]. All of the
probabilistically Lamarckian algorithms used in this in-
vestigation obtained better energies than the SGA for
the minimization of the CHARMM potential for [Met]-
Enkephalin, with the exception of the Baldwinian algo-
rithm using tournament selection.

The effectiveness of the probabilistically Lamarckian
algorithms suggests that the low-energy local minima in
the energy landscape of [Met]-Enkephalin occur some-
what regularly within the conformation space. If this
is the case for [Met]-Enkephalin, it seems likely that

2The final energies obtained using p, € {0.05,0.10,1.00} are
lower than those obtained using SGA+1CG at the 0.005 level of
significance.

it will hold for larger polypeptides as well, and hence
that probabilistically Lamarckian algorithms are appro-
priate techniques for protein structure prediction. Re-
placement frequencies must be appropriate to the level
of selective pressure, in order to ensure the presence of
enough locally optimal individuals to prevent premature
convergence.

5 FUTURE DIRECTIONS

Comparison of the effectiveness of the algorithms used
in this investigation to that of other algorithms requires
that they be applied to the same energy model. Pre-
vious work involving [Met]-Enkephalin has been based
on the ECEPP/2 model [13, 17]. The minimum energy
structure with respect to that model has an energy of
-28.96 kcal/mol when evaluated in CHARMM, which
is higher than that of four of the structures obtained
in this investigation. We are currently comparing our
algorithm to the Monte Carlo with Minimization algo-
rithm [17], using both the CHARMM and ECEPP/2
energy models.

Application of these algorithms to significantly larger
molecules requires computational resources which are
only available through the use of highly scalable ar-
chitectures. We have previously used island model ge-
netic algorithms successfully for protein structure pre-
diction [6], and we are now studying parallel designs of
the hybrid algorithms presented here.
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