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Abstract

Energy minimization efforts to predict polypeptide
structures assume their native conformation corre-
sponds to the global minimum free energy state. Given
this assumption, the problem becomes that of develop-
ing eflicient global optimization techniques applicable
to polypeptide energy models. This general structure
prediction objective is also known as the protein fold-
ing problem. Our prediction algorithms, based on gen-
eral full-atom potential energy models, are expanded
to incorporate domain knowledge into the search pro-
cess. Specifically, we evaluate the effectiveness of a real-
valued genetic algorithm exploiting domain knowledge
about certain dihedral angle values inorder to limit the
search space. We contrast this approach with our hybrid
binary genetic algorithms. Various experiments apply
these techniques to minimization of the potential energy
for the specific proteins [Met]-Enkephalin and Polyala-
nine using the CHARMM energy model.

1 Introduction

Given only the amino acid sequence for an arbitrary
polypeptide, the prediction of it’s native conformation
(i.e., molecular structure) is beyond current computa-
tional capabilities. This structure prediction problem is
commonly referred to as the protein folding problem and

it’s solution has numerous potiential applications [3].
Efforts to solve it nearly always assume that the native
conformation corresponds to the global minimum free
energy state of the system. Given this assumption, a
necessary step in solving the problem is the develop-
ment of efficient global energy minimization techniques.
This is a difficult optimization problem because of the
noun-linear and multi-modal nature of the energy func-
tion. The pentapeptide [Met]-Enkephalin, for example,
is estimated to have more than 10! locally optimal con-
formations. Energy minimization is discussed in slightly
more detail in Section 2. Vasquez et al. [31] has reviewed
the literature of polypeptide conformational energy cal-
culations. For detailed insight into the protein folding
problem consult [4, 23, 13, 26].

One class of optimization algorithms which has been
applied to the energy minimization problem is that
of genetic algorithms (GAs), which are described else-
where (e.g.  Bick [1], Goldberg [7], Holland [8],
Michalewicz [19]). The energy models to which GAs
have been applied vary from lattice representations [5,
30] to simplified continuum proteins [9, 10, 27], fixed
backbones [25, 29], polypeptide-specific full-atom mod-
els [14, 16], and general full-atom models [6, 18, 25].

In some cases (e.g. [14, 29]), the genetic algorithm
performs a search of conformations constructed from
a library of frequently occurring locally optimal single
residue conformations (rotamners). This approach may
be viewed as a sequentially hybrid approach, in which
efficient local optimization of single residue conforma-
tions precedes global optimization via genetic algorithm
of the overall polypeptide conformation.

Similarly, McGarrah and Judson [16] use a build-up



approach including step-wise local minimization to con-
struct their initial population. Their hybrid algorithm
also periodically performs local minimization, and uses
the resulting energies as the fitnesses of the correspond-
ing individuals. The individuals are never altered fol-
lowing the local minimization. This is in contrast to one
of the algorithms studied earlier by Judson et al. [9] in
which individuals are always replaced by their locally
optimized structures. Unger and Moult [30] propose a
hybrid, similar to the latter, in which each individual
undergoes 20 steps of simulated annealing before selec-
tion is performed. Simulated annealing has also been
applied to a variety of protein energy models [21].

We have proposed [18] hybrid genetic algorithm vari-
ations which incorporate efficient gradient based min-
imization directly in the fitness evaluation, which is
based on a general full-atom potential energy model.
The algorithm includes a replacement frequency param-
eter p,. which specifies the probability with which an in-
dividual is replaced by its minimized counterpart. Thus,
the algorithm can implement either Baldwinian (p, = 0)
or Lamarckian (p, = 1) evolution [32], or more generally
probabilistically Lamarckian (0 < p,. < 1) evolution.
This approach has resulted in energy values smaller than
those found in the current literature, although the as-
sociated polypeptide conformations are somewhat dif-
ferent than those achieved by other researchers due to
symmetry such as the symmetric positioning of the end
residues.

Here we introduce the REGAL (REal-valued Ge-
netic Algorithm, Limited by constraints) approach to
polypeptide structure prediction. It’s based on the Fvo-
lution Program concept of Michalewicz [19]. That is a
genetic algorithm is transformed into a stronger algo-
rithm by incorporating “natural” data structures (usu-
ally real-valued) that capture problem specific domain
knowledge, thus limiting the algorithm to a specific
problem, but enhancing its effectiveness. Such an ap-
proach is consistent with Kauffman’s NK model [12] in
which the use of real-valued alleles tends to provide for
easier GA population movements towards global opti-
mum vs binary-encoded alleles.

We describe experiments comparing the effectiveness
of the real-valued genetic REGAL algorithm to that of
our previously developed hybrid GAs [18, 17]. We test
this approach on two molecular structures (Section 3).
Conclusions are presented in Section 4, and Section 5
discusses directions for future research. The following
section presents the methodology that we employ for
the binary and real-valued GAs.

2 Methodology

In this section we discuss the objective function associ-
ated with our polypeptide energy minimization applica-

tion (Section 2.1) as well as binary and real-valued en-
coding scheme Section 2.2). We discuss the implemen-
tation of the real-valued GA in Section 2.3 and briefly
review our minimization technique in Section 2.4.

2.1 Objective Function

Our objective function, which we seek to minimize, is

based on the CHARMM [2] energy function
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where the five terms (which we denote Ez, E 4, Ep,
Ey, Env) represent the energy due to bond stretch-
ing, bond angle deformation, dihedral angle deforma-

tion, non-bonded interactions, and 1-4 interactions, re-
spectively. Specifically,

e B is the set of bonded atom pairs,
o Ais the set of atom triples defining bond angles,

e D is the set of atom 4-tuples defining dihedral an-
gles,

e N is the set of non-bonded atom pairs,

o N’ is the set of 1-4 interaction pairs,

e 7;; is the distance between atoms ¢ and j,

o Oy is the angle formed by atoms ¢, 7, and k,

o ®;;); is the dihedral angle formed by atoms . j, k,
and [,

¢ ¢; is the partial atomic charges of atom ¢,

Y - Yo Q) 5 ) R
o the K,.;'s, 7e¢’s, Ko,,,'sy Ocg’s, Ka,j0,'ss Vijkt'ss
A;j’s, Bij’s, and € are empirically determined con-

stants (taken from the QUANTA parameter files).

The CHARMM energy model seems to be the most com-
plex of those available for polypeptide prediction includ-
ing AMBER and ECEPP/2 which we have employed
elsewhere [17].



The primary determinants of a protein’s 3-D struc-
ture, and thus the energetics of the system, are its in-
dependent dihedral angles [31]. Our genetic algorithm
operates on individuals which encode these dihedral an-
gles [6]. In Equation 1, E is expressed as a function
of both the internal coordinates (bond lengths 7;; for
(1,7) € B, bond angles ©;;1, and dihedral angles ®;;1;)
and the inter-atomic distances r;; for (i,5) € N UN'.
Thus, in order to calculate E (and hence the fitness) for
the conformation encoded by an individual, it is neces-
sary to calculate its Cartesian coordinates from its in-
ternal coordinates. We use the transformation method
proposed by Thompson [28]. This method requires at
most one 4 X 4 matrix multiplication per atom per con-
formation.

2.2 Encoding Scheme

Two specific biomolecules are investigated based on va-
riety of reasons. The first is the pentapeptide [Met]-
enkephalin!. This molecule is chosen because it has
been used as a test problem for many other energy
minimization investigations (e.g. [14, 22]), and its mini-
mum energy conformation is known (with respect to the
ECEPP/2 energy model). The second is a 14 residue
model of Polyalanine. That is, it is a homogenecous
molecule made up of 14 residues of the amino acid ala-
nine. An amino acid becomes a residue when a water
H; O molecule is freed during the formation of the pep-
tide bond. Its native structure is an a-helix.

[Met]-enkephalin has 75 atoms. In it, 24 dihedral an-
gles are treated as independent, the rest are either fixed,
or treated as dependent. Polyalanine has 143 atoms. In
it, 56 dihedral angles are treated as independent.

2.2.1 Binary Representation

In the binary representation, each individual is a fixed
length binary string encoding the independent dihedral
angles of a polypeptide conformation. The decoding
function used is the affine mapping D : {0,1}!° —
[—m, 7] of 10 bit subsequences to dihedral angles such
that

10
D(avl,az,...,am)=—7r—|—27r2aj27j. (2)

i=1

This encoding yields a precision of approximately one
third of one degree.

Recall that 24 dihedral angles determine [Met]-
enkephalin’s structure, hence its string length is 240.
Likewise, 56 dihedral angles determine Polyalanine’s
structure, hence its string length is 560.

Ithe five amino acids in [Met]-enkephalin are in order tyrosine,
glycine, glycine, phenylalanine, methionine [26]

2.2.2 Real-valued Representation

In the real-valued representation each individual is vec-
tor of real variables,

Z=(z1....,2,) € R (3)
For dihedral angle —n < z; < 7. However, since 7
cannot be accurately represented as a discrete value in
a digital computer, the interval [-3.15,3.15] is used. In
the vernacular of Genocop-III (Section 2.3), the term
domain constraint is used to indicate these bounds on
the range of the variables.

2.3 REGAL Implementation

Our real-valued implementation involves the integra-
tion of our previously developed molecular and energy
models with the Genocop-III algorithm developed by
Michalewicz and Nazhiyath[20]. Genocop-III is a co-
evolutionary algorithm implementation for numerical
optimization. It deals with the problem of infeasible
candidate solutions in constrained problems by repair-
ing, rather than penalizing. This is done by maintaining
two populations, a Search population, Ps, whose mem-
bers are feasible for linear constraints, and a Reference
population, P,., whose members are feasible for all con-
straints. A unique domain can be defined for each vari-
able, else it defaults to R. Also, any number of linear
inequalities, nonlinear equalities, nonlinear inequalities
may be defined. Figure 1 reflects the general GA struc-
ture of the Genocop III stochastic search algorithm.
Figure 2 presents the critical population evaluate oper-
ator which includes a repair function. The set of alter
operators are defined in Section 2.3.4 and are modifi-
cations of the standard GA set of recombination and
mutation operators.

2.3.1 Domain Knowledge

While no general algorithmic solutions to the protein

folding problem exist today in spite of more than 30

years effort, a considerable body of knowledge has been
amassed. A few examples follow:

e w angles assume either a native state cis or trans
orientation; i.e., a unique isomerization conforma-
tion for each residue [23]

e x1 angles are usually -60, 60, 180 degrees =+ some
deviation. One can also use data from rotamer li-
braries; i.e., libraries of known side-chain structures

o Certain values for ¢ and 1 angle pair are fre-
quently or rarely observed. These constraints can
be visualized with a Ramachandran plot [206]



procedure Genocop III
begin
t — 0, “t is number of generations”
initialize Py(t)
initialize P,.(t)
evaluate Ps(t)
evaluate P,.(t)
while (not termination-condition) do
begin
t—t+1
select Py(¢t) from Ps(t — 1)
alter Py(t)
evaluate Py(t)
if ¢ mod k = 0 then
begin
alter P.(t)
select P,.(t) from P.(t — 1)
evaluate P,(¢)
end
end
end

Figure 1: The structure of Genocop III

Assuming bond lengths and bond angles are held con-
stant, the search space for the fixed geometry model is
[—pi,pi]™ where n in the number of independent dihe-
dral (or torsional) angles. Knowledge about the problem
space can be used to constrain this search space. Most
constraints can be expressed as nonlinear inequalities in
one of the following generalized forms as developed by
one of the authors, Kaiser[11]:
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procedure evaluate Ps(t)
begin
for each § € P4(t) do
if § € F “feasibility set”
then evaluate § (as f(5)) else
begin
select 7 € P,.(t)
generate Z € F
evaluate § (as f(2))
if f(7) > f(Z) then replace 7 by Z in P.
replace § by Z in Ps; with probability p,
end
end

Figure 2: Evaluation of population P, in Genocop III

Table 1: Loose constraints for [Met]-enkephalin

|| Dihedral | Midpoint | Radius ||
q)Nonfglycine -120 90
Dciycine 180 135
v 60 150
Q 180 20
X1 —60 | 60 | 180 30

Table 2: Tight constraints for [Met]-enkephalin

|| Dihedral | Midpoint | Radius ||
q)Nonfglycine -120 60
@Glycine 130 70
v 150 140
Q 180 12.5
X1 ~60]60] 130 75

are the constraints for the {¢,,w} angles, and
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are the constraints for the {x1} angles.

2.3.2 Constraint Sets

Our research focuses on computational science. There-
fore, we freely admit than a biochemist or molecular
modeler may develop a constraint set with greater fi-
delity for their special purpose. However, we claim that
these constraint sets are “reasonable” for purposes of
evaluating our search techniques since they also evolve
from known biochemical relationships [26].

The “loose” constraints for [Met]-enkephalin (Table
1) were developed by examining Ramachandran plots of
observed values of phi and psi angle for the residues ala-
nine and glycine [4]. Of the twenty amino acids, proline
and glycine have unique ¢% distributions. The other
residues are similar to alanine. The “tight” constraints
(Table 2) consider the above data and infer additional
insights from “homologous” molecules.

Values for the Polyalanine constraints (Table 3) were
developed in a similar way. It was known a prior:
that this molecule forms an a-helix secondary structure.
Thus a plot from Stryer’s text [26] that specifies the ¢1p
region for an a-helix was used. A similar process to that
above was used for the “tight” constraints (Table 4).
After consulting with biochemistry experts, a third set
of constraints “tight, relaxed terminals” were defined.
These are based on the knowledge that the dihedral an-
gles for the terminals residues will not be consistent with
the non-terminal angles even in a very regular secondary
structure like an a-helix. Same as “tight” except there
are no constraints on residues 1 and 14.



Table 3: Tight constraints for Polyalanine

|| Dihedral | Midpoint | Radius ||
o -67.5 22.5
N -30 30
Q 180 20
X1 —60] 60| 180 30

Table 4: Tight constraints for Polyalanine

|| Dihedral | Midpoint | Radius ||
® -60 15
v -45 15
Q 180 5
X1 —60] 60| 180 5

2.3.3 Input Parameter File

Sample inputs for a REGAL experiment are in Table
5. While Genocop-III introduces only a few new vari-
ables. However, there are now two populations and ten
operators to control. Thus, there many times more per-
mutations to the parameter mix. While initial results
are encouraging, we plan additional study in this area
to develop “better” parameter values.

2.3.4 Operators
GENOCOP-IIL.1.0 currently uses 10 operators. They

are:
1. Whole arithmetical crossover
2. Simple arithmetical crossover
3. Whole uniform mutation
4. Boundary mutation
5. Non-uniform mutation
6. Whole non-uniform mutation
7. Heuristic crossover
8. (Gaussian mutation
9. Pool recombination operator

10. Scatter search operator

2.4 Local Minimization

The CHARMM objective function defined by Equa-
tion 1 is such that all of its second partial derivatives
exist and are continuous almost everywhere.That is, for
cach derivative the set of discontinuities is finite in this
case. We have considered [18] three local minimization

Table 5: Sample input parameters for Polyalanine

Total number of variables 56
Number of nonlinear equality constraints 0
Number of nonlinear inequality constraints 48
Number of linear inequality constraints 0
Number of variable constraints 56
Size of reference population 20
Size of search population 40
Number of operators 10
Number of total evaluations 20000
Period of evaluation of reference pop 24
Number of offspring made during each

reference pop eval 10
Selection method of reference point

to repair search point 1

Selection of repair method for

search population 1
Init method for reference population 1
Init method for search population 1
Objective function type 1
Test case number 26
EPSILON for equalities 0.001
Random number seed 1 26482
Random number seed 2 13328
Operator frequency control 1

techniques which exploit to varying degrees this smooth-
ness property along with the ready availability of soft-
ware. The three deterministic local search approaches
considered were the first derivative method, the critical
point method and the exact second derivative method.

We selected a readily available implementation of the
first derivative method known as the conjugate gradi-
ent technique [24]. This method was chosen since it is
less computational expensive than the others for com-
plete minimization execution per individual. Yet, it re-
tains the minimization benefits for the hybrid GA ap-
proach. Here we modify the bracketing procedure used
in the line minimizations. The standard bracketing pro-
cedure (mymnbrak.c) assumes that the domain of each
of the independent variables is the set of all real num-
bers, whereas our independent variables assume values
only in the interval [—m,7]. Consequently, the inter-
vals produced by the standard procedure typically are
not limited to the basin of attraction in which the en-
coded conformation lies. Our method heuristically cor-
rects this problem by choosing an interval over which no
dihedral angle varies by more than %. Neglecting non-
bonded interactions, this guarantees that the bracketed
interval is contained in the conformation’s basin of at-
traction, and that it contains the local minimum along
the direction of minimization.

Details of the CHARMM analytical gradient deriva-



Table 6: Final minimum energies (kcal/mol) for [Met]-
enkephalin using binary GA with FP selection

|| Algorithm || Mean | Std. Dev. | RMSD Best ||
SGA -22.58 1.57 4.51
Baldwinian || -22.57 1.62 3.96
Lamarckian || -28.35 1.29 3.33

tion and our associated hybrid GA are presentedin [18].

3 Results and Comparison

In this section we present the results of experiments
on two separate molecular models, [Met]-enkephalin
and a 14 residue model of Polyalanine. As previously
published [18], fitness proportional (FP) selection with
binary encoding has shown to be most effective for
this particular problem, at least with respect to [Met]-
enkephalin. Thus this selection technique for binary
encoding is compared with the REGAL approach.

3.1 [Met]-enkephalin

In general the hybrid GA has been more effective than
the REGAL approach in minimizing [Met]-enkephalin
with a best average of -28.35 kcal/mol (Table 6) verses -
26.38 kcal/mol (TableT). However, the best over value, -
30.32 kcal /mol, was a REGAL technique, no constraints
with Lamarckian minimization. This single example
demonstrates a potential for local minimization incor-
porated with REGALL. But in general, tighter constrains
appear to interfere with local minimization. That is, a
local minima is found during the initial evaluation from
which the experiment is unable to escape. We suspect
that as the ratio of feasible space F to search space
S gets smaller, the operators are unable to generate a
more fit “feasible” candidate.

It is interesting to note that conformers have been
identified with values less than the accepted optimal
conformation (CHARMM equivalent of the ECEPP/2
conformation of Li and Scheraga [15]). We have sus-
pected the optimal conformation for ECEPP/2 and
CHARMM are different—this was confirmed during the
1996 American Chemical Society National Meeting.

3.2 Polyalanine

The effectiveness of the Binary GA (even with mini-
mization) did not hold for the larger molecule Polyala-
nine (Table 8). Significant improvement were observed
when the step size in the conjugate gradient minimiza-
tion was properly sized for for the larger molecule (an-
other example of using “domain knowledge”). When
examined visually, these conformations did not appear
to be forming the expected a-helix secondary structures.

Table 7: Final minimum energies (kcal/mol) for [Met]-
enkephalin using the REGAL approach

|| Algorithm || Mean | Std. Dev. | RMSD Best ||

No constraints 280.12 199.81 4.85
No constraints

w/local min -26.38 2.69 4.40
Loose constraints || -22.01 2.69 4.25
Loose constraints

w/local min -24.95 4.23 4.26
Tight constraints || -23.55 1.69 3.23
Tight constraints

w/local min -17.71 0.50 5.05

Table 8 Final minimum energies (kcal/mol) for

Polyalanine using binary GA with FP selection

|| Algorithm | Mean | Std. Dev. | RMSD Best ||
SGA -93.25 10.85 9.67
Baldwinian || -103.73 16.5 7.36
Lamarckian || -140.60 5.39 12.74
Lamarckian
corrected -308.51 8.26 5.03

With adequate domain knowledge, in the form of
tight constraints, REGAL performs well on the larger
molecule (Table 9). When allowed to reach 150,000 eval-
uations, the energy value is almost that of the optimal
conformation with relaxation of bond lengths and bond
angles. When examined visually, these conformations
definitely formed the expected a-helix secondary struc-
tures.

Again, local minimization was not effective when used
in conjunction with constraints. This time, the differ-
ence between the results is more substantial.

Table 9: Final minimum energies (kcal/mol) for
Polyalanine using the REGAL approach

|| Algorithm || Mean | Std. Dev. | RMSD Best ||
No constraints -273.08 13.81 6.25
Loose constraints -336.65 4.50 1.87
Loose constraints
w/local min -309.00 8.19 2.70
Tight constraints -337.64 4.40 0.98
Tight constraints
w/local min -316.47 0.02 1.17
Tight constraints w/
relaxed terminals -338.30 4.24 1.42
Tight, relaxed
150K evals -351.76 0.57 1.40




3.3 Efficiency

The experiments in this paper were conducted on a va-
riety of platforms. They include 368 node Paragon su-
percomputer, 100 and 200 mhz Silicon Graphics work-
station, SUN Sparc workstations (2, 5, and 20), and
SUN Ultra Sparc workstations.The bulk of the effort
was accomplished in a common user lab of 46 networked
Sparc20 workstations. As is to be expected, run times
(wall clock) varied with system loading. However, a few
general observations can be made:

Met -enkephalin

— Lamarckian Binary GA (10K evals) ~ 13.3
hours

— REGAL (20/50K eval) = 2 hours
¢ Polyalanine

— Lamarckian Binary GA (10K evals) =~ 120
hours

— Above on Ultra Sparc WS = 45 hours
— REGAL (20/50K eval) ~ 4 hours

While results prove nothing, initial data suggest the
REGAL approach scales better than the binary GA
with local minimization. While the above times might
seem excessive, it takes years to identify protein confor-
mations using experimental methods such as crystallog-
raphy.

4 Conclusions

The binary-valued Lamarckian GA algorithms obtained
better energies than the simple GA and Baldwinian ap-
proach for the minimization of the CHARMM potential
for [Met]-Enkephalin and Polyalanine using fitness pro-
portionate selection. The effectiveness of the Lamarck-
ian GA suggests that the low-energy local minima in the
energy landscape of [Met]-Enkephalin may occur some-
what regularly within the conformation space. If this is
the case for [Met]-Enkephalin, this approach may hold
for larger polypeptides as well, however, this was not the
case for the larger dimension Polyalanine. The REGAL
approach achieved considerably better results. Thus,
the use of our real-valued REGAL method may be ap-
propiate for higher dimensional polypeptides since good
minimum energy values for both [Met]-enkkephalin and
Polyalanine were obtained. Moreover, the local minima
for complex high-dimensional proteins may not appear
regularly in the energy landscape indicating more dif-
ficult computations for more complex proteins. Note
that the associated conformations of the two proteins re-
flected the general structural results of other researchers
as indicated by reference.

Of course, determination of appropriate linear and
non-linear constraints associated with polypeptide
structure is critical to achieving low-energy conforma-
tions as shown in our REGAL experiments. In addition,
replacement frequencies must be appropriate to the level
of selective pressure in order to insure the presence of
enough locally optimal individuals to prevent prema-
ture convergence. Thus, in the application of GAs to
the specific protein folding problem (polypeptide struc-
ture prediction), the quest of at least some general GAs
for solving a class of proteins continues. The ongoing
results of our efforts tend to indicate that a REGAL ap-
proach may solve some restricted class of protein folding
problems.

5 Future Directions

The results and conclusions of this effort indicated that
real-valued GAs for solving the polypeptide structure
problem have excellent potential. Also, the appropri-
ate use of linear and nonliner constraints has consid-
erable impact on population evolution and deserves to
be furter investigated. Moreover, the appropriate use
of real-valued GA operators has a very large impact on
population and also deserves follow-on investigations.
Comparing experimental energy data using statistical
analysis is still to be accomplished.

The success of using binary encoded and real-valued
GAs for the two proteins suggests their application to
more complex protein folding problems. In applying
GAs to more and more complex proteins, the use of
constraints may be the only way of obtaining accept-
able solutions due to the exponentially increasing num-
ber of local and golbal optimal. Such applications re-
quire additional computational platforms as found in
highly scalable architertures. We have previously|[6]
used our own GA island and farming algorithms in
solving the polypeptide structure problem for the two
polypeptides and are now mapping the real-valued GA
software to such platforms for structure prediction of
complex polypeptides.
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