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Abstract
Accurate and reliable protein structure prediction (PSP) eludes researchers primar-

ily because the search for the minimum energy conformeris computationally intractable.
This research discusses the application of several distinct genetic algorithms (GAs) as
optimum seeking techniques for PSP problems. The effectiveness and efficiency of each
algorithm is studied empirically. The specific algorithmic designs studied are a farm-
ing model parallel hybrid simple GA, a REal-valued Genetic Algorithm with Limited
Coustraints (REGAL) incorporating domain knowledge, and a island model parallel
REGAL with a novel migration operator (Para-REGAL).

1 Introduction

The prediction of an arbitrary protein’s native conformation (i.e. molecular structure)
given only its amino acid sequence is beyond current computational capabilities, but has
numerous potential applications [3]. Efforts to solve such protein structure prediction (PSP)
problems via energy minimazation assume the native conformation corresponds to the global
minimum free energy state of the system. The associated energy landscape is non-linear
and massively multimodal. Furthermore, the basins of attraction are thought to be very

“narrow,”

in the sense that the difference in energy between local minima is typically small
compared to the height of the barriers between them. Thus, a necessary step in solving the
general PSP problem is development of efficient global minimization techniques.

One probabilistic optimum seeking technique which has been applied to the PSP
problem is the genetic algorithm (GA), which is described elsewhere (see, for example,
Back [1]). The energy models to which the GA has been applied include lattice
representations [4, 22], simplified continuum proteins [9, 8, 20], fixed backbones [18, 21],
polypeptide-specific full-atom models [14, 15], and general full-atom models [6, 16, 18].
This research discusses the application of several variants of the GA as optimum seeking
techniques for PSP problems. The effectiveness and efficiency of each algorithm is studied
empirically.

Section 2 briefly discusses the general full-atom model used in this research. Experiment
I, which is described in Section 3, evaluates a farming model parallel hybrid simple GA.
Section 4 proposes a RFal-valued Genetic Algorithm with Limited Constraints (REGAL)
and describes Experiment II, which investigates the impact of incorporating domain
knowledge in the constraints of the optimization problem. Experiment III, an evaluation
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of exogenous parameters for REGAL, is discussed elsewhere [11].! Finally, Section 5
proposes an island model parallel REGAL with a novel probabilistic migration operator
(Para-REGAL), and describes Experiment IV.

2  Protein Structure Prediction (PSP)

This section briefly discusses the representation scheme used in this research to describe
macromolecular geometries. It also defines the objective function used by the energy
minimization approaches to PSP problems described in Sections 3, 4, and 5.

Geometric descriptions of macromolecular structure typically use either Cartesian
(rectilinear) or internal coordinates. The latter system specifies chosen bond lengths, bond
angles, and dihedral angles sufficient to uniquely define the geometry of the molecule.
Protein bond lengths and angles are substantially less flexible than dihedral angles.
Consequently, many optimum seeking techniques for PSP problems, including those used
in this research, reduce the dimensionality of the problem by fixing the bond lengths and
angles at their “equilibrium” values during at least some phase of the search.

The objective function used in this research is based on the CHARMM |[2] energy
function. Because bond lengths and bond angles are fixed, only the three terms representing
the energy due to dihedral angle deformation, non-bonded interactions, and 1-4 interactions
are included:
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In Equation 2, D is the set of atom 4-tuples defining dihedral angles, N is the set of
non-bonded atom pairs, A/’ is the set of 1-4 interaction pairs, r;; is the distance between
atoms ¢ and j, ®;;z; is the dihedral angle formed by atoms 1, j, k, and [, ¢; is the partial
atomic charge of atom 4, the Ks,,,,’s, Vijui’s, Ai;’s, Bi;’s, and ¢ are empirically determined
constants.

3 Experiment I: Parallel and Distributed Hybrid GAs

Limited PSP studies (e.g. [16]) compare the GENESIS genetic algorithm implementation [7]
to a probabilistically Lamarckian hybrid GA incorporating conjugate gradient local mini-
mization. Pseudocode for the hybrid algorithm is shown in Figure 1, in which p_m is the
probability of minimization, and p_r is the probability of replacement. In these studies,
the hybrid is found to be significantly more effective in the energy minimization of [Met]-
enkephalin due to the somewhat regular occurrence of local minima within the energy
landscape. The hybrid is also less efficient due to the function evaluations required for local
minimization.

The combinations of p,,, p,. and selection operator which result in the lowest energies
are shown in Table 1. The Baldwinian algorithm (FPBald) has p,, = 1.0 and p, = 0.0,

!Experiments I, II, 111, and IV are named for consistency with [10].



initialize();
for (gen=0 ; gen < max_gen; gen++){
for (i=0 ; i < pop_size ; i++) {
temp = poplil;
if (Rand() < p_m) local_min(temp);
popl[i] .fitness = temp.fitness;
if (Rand() < p_r)
popli] = temp;
}
select();
recombine () ;
mutate();

Fic. 1. Probabilistically Lamarckian genetic algorithm pseudocode

TABLE 1
Hybrid genetic algorithm test cases and final [Met]-enkephalin energies (kcal/mol). p denotes

population size.

” Algorithm H Selection ‘ Pm ‘ Py

| p=20] p=50 | p=100 |

FPBald FP 1.0 | 0.0 || -21.23 -2.62 9.50
FPLam FP 1.0 | 1.0 || -30.84 | -22.26 -15.99
TSLam TS 1.0 | 1.0 || -28.73 | -28.16 -27.68
FPSGA FP 0.0 | 0.0 || -13.51 23.55 35.21
TSSGA TS 0.0 0.0 3.43 | -19.45 -1.43

while the Lamarckian algorithms (FPLam and TSLam) have p,,, = p,, = 1.0. The remaining
algorithms (FPSGA and TSSGA) have p,, = 0.0. Algorithms FPBald, FPLam, and FPSGA
use fitness proportionate selection, while TSLam and TSSGA use tournament selection.

By definition, a farming model parallel hybrid GA (PHGA) has the same search
trajectory as the sequential hybrid GA, hence the same effectiveness, and potentially better
efficiency. The objective of Experiment I is to empirically characterize the efficiency of the
PHGA in terms of overhead, speed-up, and scalability.

Each individual is a fixed length binary string encoding the independent dihedral angles
of a [Met]-enkephalin conformation. The decoding function used is D(ay,as,...,a19) =
-7+ 27 Zjil a;277.

Experiments for the cases shown in Table 1 are performed using P € {1,2,6,12,18,24}
processors of an Intel Paragon, with population sizes p € {20,50,100}, and a maximum
of t.. € {500,1000,1500,2000} function evaluations. Results are averaged over three
executions to account for variable loading of the communications network.

The right hand side of Table 1 presents the final energies after 2000 evaluations
(independent of P). The best results for fitness proportionate selection are obtained using
¢ = 20. In contrast, the lowest energies for tournament selection are obtained with pu = 50.
Results for each of the algorithms with g = 20 are shown in Figure 2. The TSSGA converges
prematurely, terminating after 1300 evaluations.

Speedup measures the relative benefit of solving a problem in parallel [13]. Speedup for
each PHGA is plotted for u = 20 in Figure 3. Effictency is the fraction of time for which
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each processor is usefully employed [13]. Efficiency for each PHGA is plotted for p = 20
in Figure 4. The PHGAs studied in this research are most efficient when the number of
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processors is roughly half the population size. With fewer processors, the idle time of
the master processor is significant, while with more processors the idle time of the slave
processors becomes substantial.



4 Experiment II: Evaluation of Constraints for PSP

Much is known about macromolecular structure, and about protein structure in particular.
Previous applications of GAs to PSP problems neglect much of this knowledge. The
objective of Experiment II is to evaluate the impact on effectiveness and efficiency of the
incorporation of domain specific knowledge in the GA. Computational experiments are
performed for two molecules: [Met|-enkephalin and a 14 residue model of Polyalanine.
The experiment is performed using the GENOCOP III real-valued GA software [17].
GENOCOP maintains a reference population consisting entirely of feasible individuals, as
well as the usual search population (see Figure 5). The GENOCOP III real-valued GA

t := 0;
initialize_search_pop(Q);
initialize_reference_pop();
while (not termination-condition) do {
t =t + 1;
act_on_search_pop();
if (t mod k = 0) then act_on_reference_pop();

Fic. 5. GENOCOP III structure

software is integrated with domain specific constraints to create a software package called
REGAL (REal-valued GA with Limited constraints). Three constraint sets, none, loose,
and tight, are developed for each molecule which reflect to varying degrees information
obtained from Ramachandran plots [12].

Five experiments are performed for each molecule and each constraint set using
different random number seeds. Final energies after 10* evaluations are compared to those
obtained with the GENESIS-based hybrid GA. The experiments are conducted on a variety
of platforms, including a 368 node Intel Paragon, 100 and 200 MHz Silicon Graphics
workstations, as well as SUN Sparc (2, 5, and 20) and Ultra workstations. Of course,
execution times vary with system loading for all platforms.

The hybrid GA is typically more effective than the REGAL approach in minimizing
[Met]-enkephalin (Table 2). The overall best energy is obtained by a REGAL experiment,

TABLE 2
GENESIS and REGAL test cases and final minimum [Met]-enkephalin energies (kcal/mol)

H Algorithm ‘ Constraints H Mean ‘ Std. Dev. ‘ RMSD H
GENESIS N/A -22.58 1.57 4.51
Baldwinian GENESIS | N/A -22.57 1.62 3.96
Lamarckian GENESIS | N/A -28.35 1.29 3.33
REGAL None -24.92 2.99 4.57
REGAL Loose -22.01 2.69 4.25
REGAL Tight -23.55 1.69 3.23
Lamarckian REGAL None -26.38 2.69 4.40
Lamarckian REGAL Loose -24.95 4.23 4.26
Lamarckian REGAL Tight -17.71 0.50 5.05

using no constraints and Lamarckian minimization. Tight constraints together with local
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minimization result in poor effectiveness, due to reduced exploration of the search space.
Average execution time for Lamarckian GENESIS is approximately 13 hours, while that
for REGAL is approximately 2 hours.

In contrast to the situation with [Met]-enkephalin, the REGAL algorithm is typically
more effective than the hybrid GA for minimization of the larger molecule Polyalanine
(Table 3). Significant improvement is observed when a more conservative step size is chosen

TABLE 3
GENESIS and REGAL final Polyalanine minimum energies (kcal/mol)

H Algorithm ‘ Constraints H Mean ‘ Std. Dev. | RMSD H
GENESIS N/A -93.25 10.85 9.67
Baldwinian GENESIS N/A -103.73 16.5 7.36
Lamarckian GENESIS N/A -140.60 5.39 12.74
Lamarckian GENESIS
w/ conservative step size | N/A -308.51 8.26 5.03
REGAL Loose -336.65 4.50 1.87
REGAL Tight -337.64 4.40 0.98
REGAL Tight w/ relaxed terminals || -338.30 4.24 1.42
REGAL 150K evals Tight w/ relaxed terminals || -351.76 0.57 1.40
Lamarckian REGAL Loose -309.00 8.19 2.70
Lamarckian REGAL Tight -316.47 0.0 1.17

in the bracketing phase of the conjugate gradient minimization routine. The resulting
conformations do not appear to form the expected a-helix secondary structures. With
adequate domain knowledge, in the form of tight constraints, REGAL effectively minimizes
the energy of the larger molecule. After 150,000 evaluations, the energy value is almost
that of the optimal conformation without relaxation of bond lengths and bond angles. The
resulting conformations appear to form the expected a-helix secondary structures. Local
minimization is not effective when used in conjunction with constraints, due to reduced
exploration.

Average execution time for Lamarckian GENESIS is approximately 120 hours, while
that for REGAL is approximately 4 hours. These data suggest that the REGAL approach
scales better than Lamarckian GENESIS.

5 Experiment IV: Evaluation of Para-REGAL

The results of Experiment Il indicate that REGAL is an effective optimum seeking technique
in applications to PSP problems. In this section, an island model parallel REGAL with a
novel migration operator is proposed (Para-REGAL).

The search and reference populations are each partitioned into subpopulations. The
search subpopulation and reference subpopulation assigned to a particular processor are
together called an sland, and evolve independently of the other islands, with possibly
distinct parameters and domain constraints. When a new feasible solution is added to
a reference subpopulation, it emigrates with probability P,,. The solution immigrates to
each other island with independent probability P,,,. It is included in that island’s reference
population if it is feasible with respect to the constraints of that island, and the search
subpopulation otherwise.

The objective of Experiment IV is to empirically characterize the effectiveness of
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Para-REGAL. The experiments are performed with [Met]-enkephalin as the test molecule,
P,,P., € {0.0,0.33,0.66,1.00} and processor counts P € {4,16,32}. In each case, one
fourth each of the processors use no domain constraints, a reduced set of loose constraints,
the full set of loose constraints, and the tight constraints.

TABLE 4
Para-REGAL test cases and best final minimum energies (keal/mol)

Pcm

P, | 000 | 033 | 0.66 [ 1.00

0.00 || -22.38 | -22.38 | -22.38 | -22.38
0.33 || -21.62 | -29.10 | -24.33 | -25.55
0.66 || -21.92 | -23.90 | -25.79 | -26.03
1.00 || -23.35 | -25.16 | -25.45 | -22.67

Several of the experiments result is lower energies than those obtained by the best non-
Lamarckian sequential REGAL experiments. The lowest final energy is never obtained by
a tightly constrained island. This is a consequence of the fact that a solution migrating to a
more loosely constrained island is more likely to be included in the reference subpopulation
than a solution migrating to a more tightly constrained island.

6 Conclusions

These case studies show beneficial results from the proposed approaches. The hybrid GA
is a highly effective optimum seeking technique in applications to PSP problems using the
CHARMM energy model. In Experiment I, the farming model parallel hybrid GA is more
efficient, considerably reducing wall clock time. As the ratio of processors to population
size increases beyond approximately one half, idle time increases.

In Experiment II, results using a real-valued GA implementation demonstrate the
feasibility of using domain knowledge to limit the GA’s search. Lower energies result
when tight domain constraints are used. The constraint sets developed in this research are
relatively loose. A biochemist studying a particular molecule may choose to develop tighter
constraints.

The results of Experiment IV, involving Para-REGAL, indicate a synergistic relation-
ship between tightly and loosely constrained subpopulations. Better trajectories are ob-
served in subpopulations with looser constraints.
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