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A B S T R A C T  

The fast messy genetic algorithm (fmGA) belongs to 
a class of algorithms inspired by the principles of 
evolution, known appropriately as "evolutionary algo- 
rithms" (EAs). These techniques operate by applying 
biologically-inspired operators, such as recombination, 
mutation, and selection, to a population of individuals. 
EAs are frequently applied as optimum seeking tech- 
niques, by way of analogy to the principle of "survival 
of the fittest." In contrast to many EAs, the fmGA con- 
sists of several evolutionary phases, each with distinct 
characteristics of local/global computation. These are 
explained in the paper. 
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Previous scalability analyses of island-model EAs 
have been based on either fixed global population size 
or fixed subpopulation size. Recently developed popu- 
lation sizing theory enables scalability analysis based on 
fixed expected solution quality. 

Parallel computational experiments are performed to 
determine the effectiveness and efficiency of an MPI- 
based fmGA using each of these scaling techniques. The 
optimization problem for these experiments is the min- 
imization of the CHARMM energy model of the pen- 
tapeptide [Met]-Enkephalin. 

1 I N T R O D U C T I O N  

The fast messy genetic algorithm (fmGA) belongs to 
a class of algorithms inspired by the principles of 
evolution, known appropriately as "evolutionary algo- 
rithms" (EAs). These techniques operate by applying 
biologically-inspired operators, such as recombination, 
mutation, and selection, to a population of individuals. 
EAs are frequently applied as optimum seeking tech- 
niques, by way of analogy to the principle of "survival 
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of the fittest." EAs are discussed in more detail else- 
where (see, for example, Bgck [1]). 

In contrast to many EAs, the fmGA consists of several 
evolutionary phases, each with distinct characteristics 
of local and global computation. These are explained 
in Section 2, along with the MPI-based island-model 
fmGA implementation used in this research. 

Previous scalability analyses of island-model EAs 
have been based on either fixed global population size 
or fixed subpopulation size. Recently developed popu- 
lation sizing theory [3] enables scalability analysis based 
on fixed expected solution quality (Section 3). Parallel 
computational experiments are performed to determine 
the effectiveness and efficiency of an MPI-based fmGA 
using each of these scaling techniques (Section 4). 

The results of these experiments are presented in Sec- 
tion 5~ followed by conclusions and recommendations in 
Section 6. Finally, the optimization problem for these 
experiments - -  the minimization of the CHARMM en- 
ergy model of the pentapeptide [Met]-Enkephalin - -  is 
discussed in detail in Appendix A. 

2 F A S T  M E S S Y  G A  

In contrast to the uniform-length binary string repre- 
sentation scheme of the widely known simple genetic al- 
gorithm (sGA) [7], the fmGA scheme is order-invariant 
and such that individuals are not necessarily of uniform 
length [9]. Also in contrast to the sGA, the fmGA algo- 
rithm consists of distinct phases, and is typically applied 
iteratively. Successive iterations are performed varying 
the building block size k. Larger values of k imply better 
expected solution quality at the cost of greater execu- 
tion time and required memory. Thus, the upper limit of 
the iteration controls a tradeoff between computational 
resources and solution quality. The three phases of each 
iteration, which are illustrated in Figure 1, are the ini. 
tialization, primordial, and jtt~tapositional phases. 

The initialization phase consists of a random sam- 
piing of individuals of length ~' = e - k, where 
g is the number of discrete optimization variables. 
Probabilistically Complete Initialization (PCI) is a 
method of generating the initial population. 

The goal of the primordial phase is to obtain a pop- 
ulation containing individuals of length k which can 
with high probability be juxtaposed to obtain an 
optimal individual. Tournament selection focuses 
the search on highly fit individuals, while building 
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Figure 1: Fast Messy Genetic Algorithm Flow Chart 

block filtering (BBF) is a mutation operator which 
is used to periodically reduce the lengths of the in- 
dividuals. 

• The juxtapositional phase uses cut-and-splice (a re- 
combination operator) to construct highly fit indi- 
viduals of length ~ from the length k individuals 
surviving the primordial phase. Tournament selec- 
tion is used to focus the search on highly fit com- 
binations. 

In both the primordial and juxtapositional phases, 
a locally optimal solution, called the competitive tem- 
plate, is used to "fill in the gaps" in partially specified 
solutions to allow their evaluation. Also, in order to 
prevent the cross-competition between building blocks 
caused by non-uniform scaling, competition is restricted 
to those individuals which are defined at some threshold 
number of common loci. 

PCI generates a population of random individuals in 
which each building block has an expected number of 
copies sufficient to overcome sampling noise. Each in- 
dividual in the population is defined at ~' = e -  k loci, 
which are selected randomly without replacement (it is 
assumed that k << t). The population size is 

N = r~g~a, 
~ - k  e!(e- 2k)  

where ng = (ee) = (g_k)!~ , 

. ,  = I)2 (1) 

m is the number of building blocks in a fully specified 
solution, a is a parameter specifying the probability of 
selection error between two competing building blocks, 
P[Z > za] = 1 - a for Z a standard normal random 
variable, and /3 ~ is a parameter specifying the maxi- 
mum inverse signal-to-noise ratio per subfunction to be 
detected [9]. 
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The fast messy GA primordial phase enriches the ini- 
tial population via alternating tournament selection and 
building block filtering (BBF). Tournament selection in- 
creases the proportion of individuals containing highly 
fit building blocks. BBF then randomly deletes some 
number of genes from every individual, the number be- 
ing chosen so that BBF is expected to disrupt many 
but not all of the highly fit building blocks. Those indi- 
viduals still containing highly fit building blocks receive 
additional copies in subsequent iterations of tournament 
selection. The net effect is to produce a population of 
partial strings of length k with a high expected propor- 
tion of highly fit building blocks. 

Competition is restricted to those pairs of individuals 
that contain a specified number 8 of common defining 
loci. The threshold 0 for each generation is specified as 
an input parameter. Current practice is to use an em- 
pirically determined filtering and thresholding schedule, 
although theoretical work is in progress to allow a priori 
schedule design [13, 17]. Frequently, in order to obtain 
good effectiveness, it is necessary to use quite restrictive 
thresholding. In this case, the algorithmic complexity 
of selection is dominated by the O(N 2) search for pairs 
that satisfy the threshold, where N is the population 
size. 

A parallel fast messy GA (pfmGA) is designed based 
on the island model [10], and implemented in C on the 
IBM SP2. A "controller" processor inputs the GA pa- 
rameters, creates a competitive template, and broad- 
casts them to the remaining processors. Then, each 
processor (including the controller processor) indepen- 
dently performs PCI to generate and evaluate an initial 
population of N individuals. Because N depends on 
building block size, it is determined independently for 
each iteration. 

For these experiments, each processor (including the 
controller) independently performs tournament selec- 
tion on its subpopulation. Thus, selection does not re- 
quire communication. The search trajectories resulting 
from this strategy, called local selection, depend funda- 
mentally on the number and size of the subpopulations, 
and hence on the processor count. Following selection, 
each processor (including the controller) performs BBF 
and function evaluation for its subpopulation. 

For these experiments, each processor (including the 
controller) independently applies tournament selection 
and cut-and-splice to its local population (i.e. each pro- 
cessor's initial juxtapositional phase population is iden- 
tical to its final primordial phase population). 

controller sends its best solution to the controller. The 
controller determines the overall best solution, which 
becomes the competitive template for the next iteration, 
and reports execution statistics. 

3 P O P U L A T I O N  SIZING 

A key element of fmGA theory is the sizing of the ini- 
tial population, as described by Equation 1, which is 
based on the theory proposed by Goldberg, et al. [8]. 
Specifically, the population size is calculated based on 
the probability p = Pr[Z < z] of correct decision mak- 
ing, where Z is a standard normal random variable, and 
for a "signal" d to be correctly detected in the presence 
of noise @~, given n' expected samples, 

d 2 
z2 = (2) 

It is assumed that the ultimate success or failure of the 
algorithm with respect to a particular subfunction is de- 
termined by its success or failure in the first generation. 
This assumption leads to a simple GA population size 
of n, as given in Equation 1. 

More recently, Harik, et al. proposed a population 
sizing model based on random walk theory [11]. The 
number of correct copies of a building block for a par- 
ticular subfunction is modeled as a random walk in one- 
dimensional space. The initiM condition is given by the 
expected number of copies in a random population, and 
absorbing barriers exist corresponding to the extinction 
and takeover events. This model leads to the approxi- 
mate probability of ultimate success 

PN ~ 1 - (3) 

given a population of size N, a probability of 2 -} that a 
random individual contains the correct building block, 
and a probability p of correct decision making. 

Based on this model, Cantd-Paz, et al. proposed a 
model for parallel GA subpopulation sizing [3]. The 
parallel GA is assumed to succeed with respect to a 
particular subfunction provided that at least one sub- 
population does. After a lengthy derivation involving 
several approximations, the recommended subpopula- 
tion size for a parallel GA with r subpopulations, and 
a fitness function having m subfunctions, is 

At the end of each iteration (i.e. at the end of each 
juxtapositional phase), each processor other than the 

2 k tn(t - Ph) (4) 

= tn((t - p)/p) ' 
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where P~b satisfies 

b - rnPb" b 

 /mPh(1- eh) 
= In(1- ( 1 -  2(1-  2-1.))=) 

(5) 

4 E X P E R I M E N T A L  D E S I G N  

This section describes computational experiments which 
evaluate the performance of an MPI-based IBM SP2 
island model [10] pfmGA implementation. Specifically, 
experiments are conducted to determine the 

• effectiveness (overall minimum energy), 

• speedup, 

• (absolute) efficiency, 

• fixed-subpopulation-size scaled efficiency, and 

• fixed-expected-solution-quality scaled efficiency. 

Absolute efficiency is measured by fixing the global pop- 
ulation size while varying the processor count. Specif- 
ically, the block size k is iterated from 1 to 4, and 
the global population size Ark is determined strictly by 
Equation 1, where 

• the string length g = 240, as determined by the 
optimization problem (see Appendix A); 

• z~ = 6, corresponding to a probability of selection 
error a ~ l%; 

• the inverse signal-to-noise ratio ~ = 0.25, as de- 
termined by Gates' technique for ordinal-based se- 
lection methods [6]; and 

• for each iteration, the number of building blocks 
m = elk .  

Table h Population sizes for absolute efficiency and 
fixed subpopulation size scaled efficiency experiments. 

/I k II I N /P0 II 
1 1440 360 
2 1452 363 
3 1968 492 
4 3028 757 

processor count using the population sizing theory of 
Section 3. The probabilities of correct decision mak- 
ing p are estimated by assuming that the signal to be 
detected is (f,  na~ - frnl ,) /22k,  using an empirically de- 
termined fitness variance to compute the signal to noise 
ratio, and evaluating the cdf of a standard normal ran- 
dom variable (see Table 2). The resulting sGA sub- 

Table 2: Estimated probabilities of correct decision 
making as a function of block size. 

1 2 3 4 

population sizes rid(r, k), pfmGA subpopulation sizes 
N/q(r) = ~ k  na(k)nd(r,  k), and pfmGA global popula- 
tion sizes r N l q ( r  ) are shown in Table 3. 

The optimization problem for these experiments is 
the minimization of the CI-IARMM energy model [19] of 
the pentapeptide [Met]-Enkephalin. Previous research 
efforts have established [Met]-enkephalin conformations 
which are known to be low in energy, as measured by the 
CHARMM energy model [12, 18]. Appendix A describes 
the general polypeptide conformation problem in more 
detail. 

The population sizes for each block size are shown in 
Table 1. 

Scaled efficiency for fixed-subpopulation-size is mea- 
sured by fixing the subpopulation sizes while varying 
the processor count. The subpopulation size for each 
iteration of k is Nk/Po ,  where P0 = 4 is chosen based 
on the effectiveness observed in the absolute efficiency 
experiments (see Section 5). 

Fixed-expected-solution-quality scaled efficiency is 
measured by choosing the subpopulation sizes for each 

Table 3: Population sizes for fixed-expected-solution- 
quality experiments. 

1 16 43 220 
2 15 41 209 
4 14 37 190 
8 13 34 171 

16 12 32 156  
32 11 29 145 
64 11 28 136 

1473 1473 1473 
1403 1668 3336 
1258 1499 5996 
1130 1348 10784 
1027 1227 19632 

946 1131 36192 
880 L055 67520 
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2: Average final minimum energy vs. processor 

In all cases, results are averaged over five executions 
using independent pseudo-random number sequences. 

5 RESULTS A N D  ANALYSIS  

This section discusses the observed performance of the 
pfmGA. The final minimum energy obtained (averaged 
over 5 independent runs) is shown in Figure 2 as a 
function of processor count for each of the three scal- 
ing methods. As is commonly observed in parallel GAs 
with fixed global population size, there is no clear rela- 
tionship between the effectiveness and processor count. 
This is because of the competing effects of decreasing 
subpopulation size and increasing subpopulation count. 
The former decreases the effectiveness of each subpopu- 
lation, while the latter increases the effectiveness of the 
overall algorithm. The net effect is difficult to predict. 

In contrast, for fixed subpopulation size (and indepen- 
dent subpopulations), the effectiveness increases mono- 
tonically with processor count. In this case, the subpop- 
ulation size is chosen to guarantee effectiveness no worse 
than the best fixed global population size experiment. 

The final minimum energies obtained in the fixed ex- 
pected solution quality experiments are similar, but not 
identical. This is due partly to the approximate nature 
of the population sizing model, as well as the relatively 
small number of executions per case for these experi- 
ments, but it is mostly due to the unavoidable error in 
estimating the parameters for the model. Specifically, 
the exact signal to be detected is unknown. Impor- 
tantly, the effectiveness is more consistent than that for 
the fixed global population size experiments. 

k Fixed GlObal Size 

Pw~a4~or Coum 

Figure 3: Average execution time vs. processor count 

The execution time (again averaged over 5 indepen- 
dent runs) is shown in Figure 3 as a function of proces- 
sor count r for each scaling method. The results are as 
expected. For fixed global population size and the pro- 
cessor counts used in these experiments, subpopulation 
size and execution time are inversely proportional to 
processor count. For very large processor counts, com- 
munication overhead appears as a modest fraction of the 
total execution time. For fixed subpopulation size (and 
independent subpopulations), execution time is essen- 
tially constant. For fixed expected solution quality, the 
subpopulation size and execution time decrease roughly 
linearly with log r. 

Finally, the scaled efficiency (again averaged over 5 
independent runs) is shown in Figure 4 as a function of 
processor count r for each scaling method. The scaled 
efficiency E is calculated using global population size N 
as the problem size: 

N(r )  T(1) 
E(r)  = N(1) r . r ( r )  ' (6) 

where T(i)  is the execution time per processor on i 
processors, and N(i)  is the global population size on 
i processors. Efficiencies greater than one are observed 
because of the O ( N  2 r-2) complexity of the tournament 
selection algorithm (i.e. the time spent performing tour- 
nament selection decreases quadratically with subpop- 
ulation size). This effect is most dramatic in the fixed 
global population size experiments, for which the sub- 
population size varies significantly. For more than 16 
processors, the subpopulation size is small enough that 
the effect is diminished by the increased computational 
and communication overhead, so that scaled efficiency 
begins to decrease. Scaled efficiency is essentially con- 
stant for fixed population sizes, and increases slightly 
with processor count for the fixed expected solution 
quality experiments. 
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Figure 4: Scaled efficiency 

6 C O N C L U S I O N S  

The performance (effectiveness and scaled efficiency) of 
an MPl-based pfmGA for polypeptide structure pre- 
diction is determined experimentally on the IBM SP2. 
Three methods of scaling the algorithm are considered: 
fixed global population size, fixed subpopulation size, 
and fixed expected solution quality. 

The population sizes for the latter experiments are de- 
termined using a population sizing model proposed re- 
cently by Cantti-Paz, et al. Because of the error in esti- 
mating the parameters for the population sizing model, 
the solution quality in the latter experiments is only ap- 
proximately constant. The fixed expected solution qual- 
ity method is shown to represent a compromise between 
the parallel efficiency of the fixed global population size 
method and the monotonically increasing effectiveness 
of the fixed subpopulation size method. 

We wish to acknowledge the use of the DoD High 
Performance computing facilities o f  the Aeronautical 
System Center (ASC) Major Shared Resource Center 
(MSRC) at Wright-Patterson AFB in support of this 
research. 

A P R O T E I N  S T R U C T U R E  

P R E D I C T I O N  

This section discusses the objective function associated 
with the polypeptide energy minimization application, 
as well as the binary encoding scheme used in these 
experiments. The capability to predict a polypeptide's 
molecular structure given its amino acid sequence is im- 

3 9 1  

portant to numerous scientific, medical, and engineering 
applications [4]. The effort to develop a general tech- 
nique for such structure prediction is commonly referred 
to as the protein folding problem, where the minimiza- 
tion of an energy function in conformational space is 
required [22]. 

A . 1  O b j e c t i v e  F u n c t i o n  

For these experiments, conformations (i.e., the relative 
positions of the atoms comprising a molecule) are repre- 
sented using internal coordinates. That is, the position 
of atom, i is specified by a bond length, a bond angle, 
and a dihedral angle, each with respect to an appropri- 
ate number of neighboring atoms. Based on physical 
insight, a subset of the dihedral angles are chosen as 
the independent variables for the optimization process. 

The objective function, which is to be minimized, is 
based on the CHARMM [2] energy function 

E = E Kro(ro  - req)2 + 
(i,j)¢~ 

Ke,  (ei k-e,q) 2 + 
0.j,k)~.4 

E K¢,,,, [1 + cos(nijk,OOk, -- 7,~kl)] + 
(i,j,k,Ocv 

1 
_ _  _ qiqj [ + 

(i,j)ed~f L \ rij / \ rij / 

, [(m.5"_ ] 
O,DE;v" 

where the five terms (which we denote E~, E~, Ev, 
E~¢, E~¢,) represent the energy due to bond stretch- 
ing, bond angle deformation, dihedral angle deforma- 
tion, non-bonded interactions, and 1-4 interactions, re- 
spectively. Specifically, 

• B is the set of bonded atom pairs, 

• A is the set of atom triples defining bond angles, 

• 7) is the set of atom 4-tuples defining dihedral an- 
gles, 

• N" is the set of non-bonded atom pairs, 

• A z' is the set of I-4 interaction pairs, 

• r O is the distance between atoms i and j, 

• eijk is the angle formed by atoms i, j, and k, 



* q)~jkt is the dihedral angle formed by atoms i, j, k, 
and 1, 

* ql is the partial atomic charges of atom i, 

* the Kr,j's, r,q'S, Ke.~h's, O~q'S, K¢~,,,'s, 3qjm's, 
Aij '$, 8ij *s, and ¢ are empirically determined con- 
stants (taken from the QUANTA parameter files). 

In Equation 7, internal energy is expressed as a function 
of both the internal coordinates and the inter-atomic 
distances. Thus, in order to calculate the energy (and 
hence the fitness) of the conformation encoded by an in- 
dividual, it is necessary to calculate its Cartesian coor- 
dinates from its internal coordinates. We use the trans- 
formation method proposed by Thompson [21]. This 
method requires at most one 4 x 4 matrix multiplica- 
tion per atom per conformation. 

A . 2  E n c o d i n g  S c h e m e  

Each individual is a fixed length binary string encod- 
ing the independent dihedral angles of a polypeptid e 
conformation. The decoding function used is the affine 
mapping D : {0, 1} l° ~ [-~', a'] of 10 bit subsequences 
to dihedral angles such that 

10 

D(at,a2,...,alo) = -r + 2rZaj2-J. 
j = l  

(8) 

This encoding yields a precision of approximately one 
third of one degree. In these experiments, the 24 
¢, ¢, w, and X dihedral angles of the pentapeptide 
[Met]-Enkephalin are the independent variables for op- 
timization, hence the string length is 240. [Met]- 
Enkephalin is chosen because it has been used as a test 
problem for many other energy minimization investiga- 
tions (e.g. [15, 20]), and its minimum energy confor- 
mation is known (with respect to the ECEPP/2 energy 
model)[16]. 
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