
S C A L A B I L I T Y OF A N M P I - B A S E D FAST M E S S Y
G E N E T I C A L G O R I T H M

Laurence D. Merkle
Center for P lasma Theory and Computa t ion

Air Force Research Laboratory
Kir t land AFB, OH 87117

merklelQplk.af .mil

George H. Gates, Jr.
Air Force Research Laboratory
WL HPC Technical Focal Point

Wright-Pat terson AFB, OH 45433
ga tesgh~asc .hpc .mi l

G a r y B. L a m o n t
Depar tment of Electrical and Compute r Engineer ing

Graduate School of Engineering
Air Force Inst i tu te of Technology
Wright-Pat terson AFB, OH 45433

lamont@afit .af.mil

Key Words: Parallel Genetic Algorithms, Messy Ge-
netic Algorithms, Polypeptide Structure Prediction,
Fixed Solution Quality, Population Sizing.

A B S T R A C T

The fast messy genetic algorithm (fmGA) belongs to
a class of algorithms inspired by the principles of
evolution, known appropriately as "evolutionary algo-
rithms" (EAs). These techniques operate by applying
biologically-inspired operators, such as recombination,
mutation, and selection, to a population of individuals.
EAs are frequently applied as optimum seeking tech-
niques, by way of analogy to the principle of "survival
of the fittest." In contrast to many EAs, the fmGA con-
sists of several evolutionary phases, each with distinct
characteristics of local/global computation. These are
explained in the paper.

1998 ACM 0-89791-969-6/98/0002

Previous scalability analyses of island-model EAs
have been based on either fixed global population size
or fixed subpopulation size. Recently developed popu-
lation sizing theory enables scalability analysis based on
fixed expected solution quality.

Parallel computational experiments are performed to
determine the effectiveness and efficiency of an MPI-
based fmGA using each of these scaling techniques. The
optimization problem for these experiments is the min-
imization of the CHARMM energy model of the pen-
tapeptide [Met]-Enkephalin.

1 I N T R O D U C T I O N

The fast messy genetic algorithm (fmGA) belongs to
a class of algorithms inspired by the principles of
evolution, known appropriately as "evolutionary algo-
rithms" (EAs). These techniques operate by applying
biologically-inspired operators, such as recombination,
mutation, and selection, to a population of individuals.
EAs are frequently applied as optimum seeking tech-
niques, by way of analogy to the principle of "survival

3B6

Proceedings of the 1998 Symposium on Applied Computing, New York: The Association for Computing Machinery, 1998.

of the fittest." EAs are discussed in more detail else-
where (see, for example, Bgck [1]).

In contrast to many EAs, the fmGA consists of several
evolutionary phases, each with distinct characteristics
of local and global computation. These are explained
in Section 2, along with the MPI-based island-model
fmGA implementation used in this research.

Previous scalability analyses of island-model EAs
have been based on either fixed global population size
or fixed subpopulation size. Recently developed popu-
lation sizing theory [3] enables scalability analysis based
on fixed expected solution quality (Section 3). Parallel
computational experiments are performed to determine
the effectiveness and efficiency of an MPI-based fmGA
using each of these scaling techniques (Section 4).

The results of these experiments are presented in Sec-
tion 5~ followed by conclusions and recommendations in
Section 6. Finally, the optimization problem for these
experiments - - the minimization of the CHARMM en-
ergy model of the pentapeptide [Met]-Enkephalin - - is
discussed in detail in Appendix A.

2 F A S T M E S S Y G A

In contrast to the uniform-length binary string repre-
sentation scheme of the widely known simple genetic al-
gorithm (sGA) [7], the fmGA scheme is order-invariant
and such that individuals are not necessarily of uniform
length [9]. Also in contrast to the sGA, the fmGA algo-
rithm consists of distinct phases, and is typically applied
iteratively. Successive iterations are performed varying
the building block size k. Larger values of k imply better
expected solution quality at the cost of greater execu-
tion time and required memory. Thus, the upper limit of
the iteration controls a tradeoff between computational
resources and solution quality. The three phases of each
iteration, which are illustrated in Figure 1, are the ini.
tialization, primordial, and jtt~tapositional phases.

The initialization phase consists of a random sam-
piing of individuals of length ~' = e - k, where
g is the number of discrete optimization variables.
Probabilistically Complete Initialization (PCI) is a
method of generating the initial population.

The goal of the primordial phase is to obtain a pop-
ulation containing individuals of length k which can
with high probability be juxtaposed to obtain an
optimal individual. Tournament selection focuses
the search on highly fit individuals, while building

i

I

Figure 1: Fast Messy Genetic Algorithm Flow Chart

block filtering (BBF) is a mutation operator which
is used to periodically reduce the lengths of the in-
dividuals.

• The juxtapositional phase uses cut-and-splice (a re-
combination operator) to construct highly fit indi-
viduals of length ~ from the length k individuals
surviving the primordial phase. Tournament selec-
tion is used to focus the search on highly fit com-
binations.

In both the primordial and juxtapositional phases,
a locally optimal solution, called the competitive tem-
plate, is used to "fill in the gaps" in partially specified
solutions to allow their evaluation. Also, in order to
prevent the cross-competition between building blocks
caused by non-uniform scaling, competition is restricted
to those individuals which are defined at some threshold
number of common loci.

PCI generates a population of random individuals in
which each building block has an expected number of
copies sufficient to overcome sampling noise. Each in-
dividual in the population is defined at ~' = e - k loci,
which are selected randomly without replacement (it is
assumed that k << t). The population size is

N = r~g~a,
~ - k e!(e- 2k)

where ng = (ee) = (g_k)!~ ,

. , = I)2 (1)

m is the number of building blocks in a fully specified
solution, a is a parameter specifying the probability of
selection error between two competing building blocks,
P[Z > za] = 1 - a for Z a standard normal random
variable, and /3 ~ is a parameter specifying the maxi-
mum inverse signal-to-noise ratio per subfunction to be
detected [9].

387

-~ % , ~ . : , i : : ! -~ , : i . . ~ • • - - ~ / ~ : ~ ; : ~ . . •

The fast messy GA primordial phase enriches the ini-
tial population via alternating tournament selection and
building block filtering (BBF). Tournament selection in-
creases the proportion of individuals containing highly
fit building blocks. BBF then randomly deletes some
number of genes from every individual, the number be-
ing chosen so that BBF is expected to disrupt many
but not all of the highly fit building blocks. Those indi-
viduals still containing highly fit building blocks receive
additional copies in subsequent iterations of tournament
selection. The net effect is to produce a population of
partial strings of length k with a high expected propor-
tion of highly fit building blocks.

Competition is restricted to those pairs of individuals
that contain a specified number 8 of common defining
loci. The threshold 0 for each generation is specified as
an input parameter. Current practice is to use an em-
pirically determined filtering and thresholding schedule,
although theoretical work is in progress to allow a priori
schedule design [13, 17]. Frequently, in order to obtain
good effectiveness, it is necessary to use quite restrictive
thresholding. In this case, the algorithmic complexity
of selection is dominated by the O(N 2) search for pairs
that satisfy the threshold, where N is the population
size.

A parallel fast messy GA (pfmGA) is designed based
on the island model [10], and implemented in C on the
IBM SP2. A "controller" processor inputs the GA pa-
rameters, creates a competitive template, and broad-
casts them to the remaining processors. Then, each
processor (including the controller processor) indepen-
dently performs PCI to generate and evaluate an initial
population of N individuals. Because N depends on
building block size, it is determined independently for
each iteration.

For these experiments, each processor (including the
controller) independently performs tournament selec-
tion on its subpopulation. Thus, selection does not re-
quire communication. The search trajectories resulting
from this strategy, called local selection, depend funda-
mentally on the number and size of the subpopulations,
and hence on the processor count. Following selection,
each processor (including the controller) performs BBF
and function evaluation for its subpopulation.

For these experiments, each processor (including the
controller) independently applies tournament selection
and cut-and-splice to its local population (i.e. each pro-
cessor's initial juxtapositional phase population is iden-
tical to its final primordial phase population).

controller sends its best solution to the controller. The
controller determines the overall best solution, which
becomes the competitive template for the next iteration,
and reports execution statistics.

3 P O P U L A T I O N SIZING

A key element of fmGA theory is the sizing of the ini-
tial population, as described by Equation 1, which is
based on the theory proposed by Goldberg, et al. [8].
Specifically, the population size is calculated based on
the probability p = Pr[Z < z] of correct decision mak-
ing, where Z is a standard normal random variable, and
for a "signal" d to be correctly detected in the presence
of noise @~, given n' expected samples,

d 2
z2 = (2)

It is assumed that the ultimate success or failure of the
algorithm with respect to a particular subfunction is de-
termined by its success or failure in the first generation.
This assumption leads to a simple GA population size
of n, as given in Equation 1.

More recently, Harik, et al. proposed a population
sizing model based on random walk theory [11]. The
number of correct copies of a building block for a par-
ticular subfunction is modeled as a random walk in one-
dimensional space. The initiM condition is given by the
expected number of copies in a random population, and
absorbing barriers exist corresponding to the extinction
and takeover events. This model leads to the approxi-
mate probability of ultimate success

PN ~ 1 - (3)

given a population of size N, a probability of 2 -} that a
random individual contains the correct building block,
and a probability p of correct decision making.

Based on this model, Cantd-Paz, et al. proposed a
model for parallel GA subpopulation sizing [3]. The
parallel GA is assumed to succeed with respect to a
particular subfunction provided that at least one sub-
population does. After a lengthy derivation involving
several approximations, the recommended subpopula-
tion size for a parallel GA with r subpopulations, and
a fitness function having m subfunctions, is

At the end of each iteration (i.e. at the end of each
juxtapositional phase), each processor other than the

2 k tn(t - Ph) (4)

= tn((t - p)/p) '

3 8 8

where P~b satisfies

b - rnPb" b

 /mPh(1- eh)
= In(1- (1 - 2(1- 2-1.))=)

(5)

4 E X P E R I M E N T A L D E S I G N

This section describes computational experiments which
evaluate the performance of an MPI-based IBM SP2
island model [10] pfmGA implementation. Specifically,
experiments are conducted to determine the

• effectiveness (overall minimum energy),

• speedup,

• (absolute) efficiency,

• fixed-subpopulation-size scaled efficiency, and

• fixed-expected-solution-quality scaled efficiency.

Absolute efficiency is measured by fixing the global pop-
ulation size while varying the processor count. Specif-
ically, the block size k is iterated from 1 to 4, and
the global population size Ark is determined strictly by
Equation 1, where

• the string length g = 240, as determined by the
optimization problem (see Appendix A);

• z~ = 6, corresponding to a probability of selection
error a ~ l%;

• the inverse signal-to-noise ratio ~ = 0.25, as de-
termined by Gates' technique for ordinal-based se-
lection methods [6]; and

• for each iteration, the number of building blocks
m = elk .

Table h Population sizes for absolute efficiency and
fixed subpopulation size scaled efficiency experiments.

/I k II I N /P0 II
1 1440 360
2 1452 363
3 1968 492
4 3028 757

processor count using the population sizing theory of
Section 3. The probabilities of correct decision mak-
ing p are estimated by assuming that the signal to be
detected is (f, na~ - frnl ,) /22k, using an empirically de-
termined fitness variance to compute the signal to noise
ratio, and evaluating the cdf of a standard normal ran-
dom variable (see Table 2). The resulting sGA sub-

Table 2: Estimated probabilities of correct decision
making as a function of block size.

1 2 3 4

population sizes rid(r, k), pfmGA subpopulation sizes
N/q(r) = ~ k na(k)nd(r, k), and pfmGA global popula-
tion sizes r N l q (r) are shown in Table 3.

The optimization problem for these experiments is
the minimization of the CI-IARMM energy model [19] of
the pentapeptide [Met]-Enkephalin. Previous research
efforts have established [Met]-enkephalin conformations
which are known to be low in energy, as measured by the
CHARMM energy model [12, 18]. Appendix A describes
the general polypeptide conformation problem in more
detail.

The population sizes for each block size are shown in
Table 1.

Scaled efficiency for fixed-subpopulation-size is mea-
sured by fixing the subpopulation sizes while varying
the processor count. The subpopulation size for each
iteration of k is Nk/Po , where P0 = 4 is chosen based
on the effectiveness observed in the absolute efficiency
experiments (see Section 5).

Fixed-expected-solution-quality scaled efficiency is
measured by choosing the subpopulation sizes for each

Table 3: Population sizes for fixed-expected-solution-
quality experiments.

1 16 43 220
2 15 41 209
4 14 37 190
8 13 34 171

16 12 32 156
32 11 29 145
64 11 28 136

1473 1473 1473
1403 1668 3336
1258 1499 5996
1130 1348 10784
1027 1227 19632

946 1131 36192
880 L055 67520

389

-21

-22

-23

.24

.25q

! -2{5 '

.27

.28 !

-29

Figure
count

F~I toeat ~ e ---. / ~,~ e..,~o,,~

. f t . / "'"-.,.

. l l r '" "'-.. . / " , " " " "

i i i
2 4 . 1; 22 64

Proce~or ~unt

2: Average final minimum energy vs. processor

In all cases, results are averaged over five executions
using independent pseudo-random number sequences.

5 RESULTS A N D ANALYSIS

This section discusses the observed performance of the
pfmGA. The final minimum energy obtained (averaged
over 5 independent runs) is shown in Figure 2 as a
function of processor count for each of the three scal-
ing methods. As is commonly observed in parallel GAs
with fixed global population size, there is no clear rela-
tionship between the effectiveness and processor count.
This is because of the competing effects of decreasing
subpopulation size and increasing subpopulation count.
The former decreases the effectiveness of each subpopu-
lation, while the latter increases the effectiveness of the
overall algorithm. The net effect is difficult to predict.

In contrast, for fixed subpopulation size (and indepen-
dent subpopulations), the effectiveness increases mono-
tonically with processor count. In this case, the subpop-
ulation size is chosen to guarantee effectiveness no worse
than the best fixed global population size experiment.

The final minimum energies obtained in the fixed ex-
pected solution quality experiments are similar, but not
identical. This is due partly to the approximate nature
of the population sizing model, as well as the relatively
small number of executions per case for these experi-
ments, but it is mostly due to the unavoidable error in
estimating the parameters for the model. Specifically,
the exact signal to be detected is unknown. Impor-
tantly, the effectiveness is more consistent than that for
the fixed global population size experiments.

k Fixed GlObal Size

Pw~a4~or Coum

Figure 3: Average execution time vs. processor count

The execution time (again averaged over 5 indepen-
dent runs) is shown in Figure 3 as a function of proces-
sor count r for each scaling method. The results are as
expected. For fixed global population size and the pro-
cessor counts used in these experiments, subpopulation
size and execution time are inversely proportional to
processor count. For very large processor counts, com-
munication overhead appears as a modest fraction of the
total execution time. For fixed subpopulation size (and
independent subpopulations), execution time is essen-
tially constant. For fixed expected solution quality, the
subpopulation size and execution time decrease roughly
linearly with log r.

Finally, the scaled efficiency (again averaged over 5
independent runs) is shown in Figure 4 as a function of
processor count r for each scaling method. The scaled
efficiency E is calculated using global population size N
as the problem size:

N(r) T(1)
E(r) = N(1) r . r (r) ' (6)

where T(i) is the execution time per processor on i
processors, and N(i) is the global population size on
i processors. Efficiencies greater than one are observed
because of the O (N 2 r-2) complexity of the tournament
selection algorithm (i.e. the time spent performing tour-
nament selection decreases quadratically with subpop-
ulation size). This effect is most dramatic in the fixed
global population size experiments, for which the sub-
population size varies significantly. For more than 16
processors, the subpopulation size is small enough that
the effect is diminished by the increased computational
and communication overhead, so that scaled efficiency
begins to decrease. Scaled efficiency is essentially con-
stant for fixed population sizes, and increases slightly
with processor count for the fixed expected solution
quality experiments.

390

3500

25~0

!-

, , ° , , , , ,

Fixed G k ~ d Size -*--.
\ I q x ~ Load Size -~--

======================== ======================~._. , . .

. o ¢ 1

i | i I [,

2 4 P I; C4*J~ roo~41~ 14 32 64

Figure 4: Scaled efficiency

6 C O N C L U S I O N S

The performance (effectiveness and scaled efficiency) of
an MPl-based pfmGA for polypeptide structure pre-
diction is determined experimentally on the IBM SP2.
Three methods of scaling the algorithm are considered:
fixed global population size, fixed subpopulation size,
and fixed expected solution quality.

The population sizes for the latter experiments are de-
termined using a population sizing model proposed re-
cently by Cantti-Paz, et al. Because of the error in esti-
mating the parameters for the population sizing model,
the solution quality in the latter experiments is only ap-
proximately constant. The fixed expected solution qual-
ity method is shown to represent a compromise between
the parallel efficiency of the fixed global population size
method and the monotonically increasing effectiveness
of the fixed subpopulation size method.

We wish to acknowledge the use of the DoD High
Performance computing facilities o f the Aeronautical
System Center (ASC) Major Shared Resource Center
(MSRC) at Wright-Patterson AFB in support of this
research.

A P R O T E I N S T R U C T U R E

P R E D I C T I O N

This section discusses the objective function associated
with the polypeptide energy minimization application,
as well as the binary encoding scheme used in these
experiments. The capability to predict a polypeptide's
molecular structure given its amino acid sequence is im-

3 9 1

portant to numerous scientific, medical, and engineering
applications [4]. The effort to develop a general tech-
nique for such structure prediction is commonly referred
to as the protein folding problem, where the minimiza-
tion of an energy function in conformational space is
required [22].

A . 1 O b j e c t i v e F u n c t i o n

For these experiments, conformations (i.e., the relative
positions of the atoms comprising a molecule) are repre-
sented using internal coordinates. That is, the position
of atom, i is specified by a bond length, a bond angle,
and a dihedral angle, each with respect to an appropri-
ate number of neighboring atoms. Based on physical
insight, a subset of the dihedral angles are chosen as
the independent variables for the optimization process.

The objective function, which is to be minimized, is
based on the CHARMM [2] energy function

E = E Kro(ro - req)2 +
(i,j)¢~

Ke, (ei k-e,q) 2 +
0.j,k)~.4

E K¢,,,, [1 + cos(nijk,OOk, -- 7,~kl)] +
(i,j,k,Ocv

1
_ _ _ qiqj [+

(i,j)ed~f L \ rij / \ rij /

, [(m.5"_]
O,DE;v"

where the five terms (which we denote E~, E~, Ev,
E~¢, E~¢,) represent the energy due to bond stretch-
ing, bond angle deformation, dihedral angle deforma-
tion, non-bonded interactions, and 1-4 interactions, re-
spectively. Specifically,

• B is the set of bonded atom pairs,

• A is the set of atom triples defining bond angles,

• 7) is the set of atom 4-tuples defining dihedral an-
gles,

• N" is the set of non-bonded atom pairs,

• A z' is the set of I-4 interaction pairs,

• r O is the distance between atoms i and j,

• eijk is the angle formed by atoms i, j, and k,

* q)~jkt is the dihedral angle formed by atoms i, j, k,
and 1,

* ql is the partial atomic charges of atom i,

* the Kr,j's, r,q'S, Ke.~h's, O~q'S, K¢~,,,'s, 3qjm's,
Aij '$, 8ij *s, and ¢ are empirically determined con-
stants (taken from the QUANTA parameter files).

In Equation 7, internal energy is expressed as a function
of both the internal coordinates and the inter-atomic
distances. Thus, in order to calculate the energy (and
hence the fitness) of the conformation encoded by an in-
dividual, it is necessary to calculate its Cartesian coor-
dinates from its internal coordinates. We use the trans-
formation method proposed by Thompson [21]. This
method requires at most one 4 x 4 matrix multiplica-
tion per atom per conformation.

A . 2 E n c o d i n g S c h e m e

Each individual is a fixed length binary string encod-
ing the independent dihedral angles of a polypeptid e
conformation. The decoding function used is the affine
mapping D : {0, 1} l° ~ [-~', a'] of 10 bit subsequences
to dihedral angles such that

10

D(at,a2,...,alo) = -r + 2rZaj2-J.
j = l

(8)

This encoding yields a precision of approximately one
third of one degree. In these experiments, the 24
¢, ¢, w, and X dihedral angles of the pentapeptide
[Met]-Enkephalin are the independent variables for op-
timization, hence the string length is 240. [Met]-
Enkephalin is chosen because it has been used as a test
problem for many other energy minimization investiga-
tions (e.g. [15, 20]), and its minimum energy confor-
mation is known (with respect to the ECEPP/2 energy
model)[16].

R e f e r e n c e s

[1] Thomas B~k. Evolutionary Algorithms in Theory
and Practice. Oxford University Press, New York,
1996.

[31

[5]

[61

[71

is]

[9]

[101

fill

[12]

Erick Cantd-Paz and David E. Goldberg. Mod-
eling idealized bounding cases of parallel genetic
algorithms. In Koza et al. [14], pages 353-361.

Hue Sun Chan and Ken A. Dill. The protein folding
problem. Physics Today, pages 24-32, February
1993.

Stephanie Forrest, editor. Proceedings of the Fifth
International Conference on Genetic Algorithms,
San Mateo CA, July 1993. Morgan Kaufmann Pub-
lishers, Inc.

George H. Gates, Jr. Predicting protein structure
using parallel genetic algorithms. Master's thesis,
Graduate School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB
OH 45433, December 1994.

David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Company, Reading MA, 1989.

David E. Goldberg, Kalyanmoy Deb, and James H.
Clark. Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6:333-362, 1992.

David E. Goldberg, Kalyanmoy Deb, Hillol Kar-
gupta, and Georges Harik. Rapid, accurate opti-
mization of difficult problems using fast messy ge-
netic algorithms. In Forrest [5], pages 56-64.

V. Scott Gordon and Darrell Whitley. Serial and
parallel genetic algorithms as function optimizers.
In Forrest [5], pages 177-183.

Georges Harik, Erick Cantd-Paz, David E. Gold-
berg, and Brad L. Miller. The gambler's ruin prob-
lem, genetic algorithms, and the sizing of popula-
tions, pages 7-12, New York, 1997. IEEE Press.

Charles E. Kaiser, Jr., Laurence D. Merkle,
Gary B. Lamont, George H. Gates, Jr., and Ruth
Pachter. Case studies in protein structure pre-
diction with real-valued genetic algorithms. In
Michael Heath, Virginia Torczon, Greg Astfalk,
Petter E. Bjerstad, Alan H. Karp, Charles H. Koel-
bel, Vipin Kumar, Robert F. Lucas, Layne T. Wat-
son, and David E. Womble, editors, Proceedings of
the Eighth SIAM Conference on Parallel Processing
for Scientific Computing,, Philadelphia, PA, 1997.
SIAM, Society for Industrial and Applied Mathe-
matics.

[2] Bernard R. Brooks et al. CHARMM: A pro-
gram for macromolecular energy, minimization,
and dynamic calculations. Jounal of Computa-
tional Chemistry, 4(2):187-217, 1983.

[131 Hillol Kargupta. SEARCH, Polynomial Complex-
ity, and the Fast Messy Genetic Algorithm. PhD
thesis, University of Illinois, 1995. Also available
as IIIIiGAL Report No. 95008.

392

[14] John Koza et ai., editors. Genetic Programming
1997: Proceedings of the Second "Annual Confer-
ence, San Francisco, 1997. Morgan Kauffman Pub-
lishers.

[15] Scott M. LeGrand and Kenneth M. Merz Jr. The
application of the genetic algorithm to the mini-
mizationof potential energy functions. Journal of
Global Optimization, 3:49-66, 1991.

[16] Zhenqin Li and Harold A. Scheraga. Monte carlo-
minimization approach to the multiple-minima
problem in protein folding. Proceedings of the
National Academy of Science USA, 84:6611-6615,
1987.

[17] Laurence D. Merkle. Analysis of Linkage-Friendly
Genetic Algorithms. PhD thesis, Graduate School
of Engineering, Air Force Institute of Technology
(AU),.Wright-Patterson AFB OH 45433, December
1996.

[18] Laurence D. Merkle, Robert L. Gaulke, George H.
Gates, Jr., Gary B. Lamont, and Ruth Pachter.
Hybrid genetic algorithms for polypeptide energy
minimization. In Applied Computing 1996: Pro-
ceedings of the 1996 Symposium on Applied Com-
puting, New York, 1996. The Association for Com-
puting Machinery.

[19] Molecular Simulations, Incorporated. CHARMm
version 22.0 Parameter File, 1992.

[20] Akbar Nayeem, Jorge Vila, and Harold A. Scher-
aga. A comparative study of the simulated-
annealing and Monte Carlo-with-minimization ap-
proaches to the minimum-energy structures of
polypeptides: [Met]-Enkephalin. Journal of Com-
putational Chemistry, 12(5):594-605, 1991.

[21] H. Bradford Thompson. Calculation of carte-
sian coordinates and their derivatives from internal
molecular coordinates. The Journal of Chemical
Physics, 47(9):3407-3410, November 1967.

[22] Maximiliano V£squez, G. N4methy, and H. A.
Scheraga. Conformational energy calculations on
polypeptides and proteins. Chemical Reviews,
94:2183-2239, 1994.

393

