Optimization of the Signal Growth Rate in a Class of Multicavity RKO with Axially Varying Geometry Laurence D. Merkle **Department of Computer Science** USAF Academy John W. Luginsland Air Force Research Laboratory: Phillips Research Site **Directed Energy Directorate** Kirtland AFB. NM 2000 IEEE International Conference on Plasma Science

7 June 2000, New Orleans, LA

Overview

Background

- Relativistic Klystron Oscillator
- Evolutionary Algorithms
- Methodology
 - Multi-cavity RKO Model
 - Computational Approach
- Results
- Conclusions and Future Directions
- References

Background: RKO (Hendricks, et al., 1996)

- Transverse electron motion restricted by static magnetic field
- First cavity driven by external RF source
- RF gap voltage modulates electron beam velocity
- Coupled booster cavity enhances AC component (Luginsland, et al, 1996)

Background: Evolutionary Algorithms

- Inspired by processes of natural selection
- Population initialized as collection of random individuals
- Individuals evaluated according to fitness function
- Genetic operators applied to population
 - Selection: Offspring population biased toward more fit individuals
 - Recombination: Features from multiple parents combined in offspring
 - Mutation: Random variation added to offspring
- Applied successfully as optimum-seeking techniques
 - Useful for objective functions that are discontinuous, nonconvex, ...

Methodology: Multi-cavity RKO Model

- Model evolution of gap voltages including effects of:
 - Cavity resonances
 - Electromagnetic coupling
 - Beam coupling

Assumptions

- Small signal, modal, steady-state solutions
 - \Rightarrow Superposition principle applies to beam modulation
- Cavity coupling is weak and occurs through cutoff waveguide ⇒Only nearest neighbor electromagnetic coupling is significant
- Generalizes Luginsland's dispersion relation model of the two-cavity RKO (Luginsland, 1996) to the N-cavity RKO
 - Cavities may have distinct natural frequencies, qualities, and impedances
 - Drift regions may have distinct radii, lengths, and loss coefficients

Methodology: Multi-cavity RKO Model

Assuming solutions $e^{-j\omega t}$, the gap voltage V_m satisfies

$$L_{m}(\omega)V_{m} + C_{m-1}V_{m-1} + C_{m}V_{m+1} + \sum_{n < m}\Gamma_{m,n}V_{n} = 0$$

,

•

where the damped harmonic oscillator operator is

$$L_m(\omega) = \frac{\omega^2}{\omega_{0,m}^2} - \frac{j\omega}{\omega_{0,m}Q_m} - 1$$

the electromagnetic coupling coefficient is

$$C_{m} = \chi_{c,m} \exp\left[-\frac{2.405}{r_{w,m}} \sqrt{1 - \left(\frac{2\pi\omega_{0,m}r_{w,m}}{0.383c}\right)^{2}} (x_{m+1} - x_{m})\right],$$

and the beam coupling coefficient is

$$\Gamma_{m,n} = \frac{Z_m}{R} \sin\left\{\sum_{r=n}^{m-1} k_{p,r} (x_{r+1} - x_r)\right\} \exp\left[-\frac{j\omega_{0,n}}{\beta c} (x_m - x_n)\right]$$

Methodology: Multi-cavity RKO Model

 The evolution of the cavity voltages V=(V₁, V₂, ..., V_N)^T are thus described by [A(ω)]V = 0, where

- Resonant frequencies ω satisfy det[A(ω)] = 0
 - det[A(ω)] is a polynomial of degree 2N in ω
 - $Im[\omega]$ is the mode's growth rate, to be maximized

Methodology: GENOCOP III (Michalewicz, 1992)

- Public domain UNIX-based real-valued EA used widely and successfully for parameter optimization problems
- Minimization and maximization problems
- Constraints:
 - linear equality,
 - linear inequality, and
 - non-linear inequality
- Operators:
 - selection: exponential ranking
 - crossover: whole and simple arithmetic
 - mutation: uniform, boundary, non-uniform, and whole non-uniform
- Maintains separate "reference" population of feasible individuals; highly fit but infeasible individuals are occasionally recombined with reference individuals

Methodology: Independent Variables and Domains

Identify candidate designs

Represented as vectors of independent variables:

 $(V_0, I_0, r_i, r_o-r_i,$

 $f_{0,1},...,f_{0,N},Q_1,...,Q_N,Q_1Z_1,...,Q_NZ_N,$

 $\mathbf{d}_{1}, \dots, \mathbf{d}_{N-1}, \chi_{r,1}, \dots, \chi_{r,N-1}, \chi_{c,1}, \dots, \chi_{c,N-1})^{\mathrm{T}}$

Components satisfy variable domain constraints:

	Lower		Upper
Quantity	bound	Variable	bound
Beam voltage	300 kV	Vo	650 kV
Beam current	5 kA	l _o	35 kA
Beam inner radius	0.1 cm	r _i	12 cm
Beam thickness	0.1 cm	r _o - r _i	1 cm
Cavity natural frequencies	1 GHz	f ₀	2 GHz
Cavity qualities	50	Q	500
Cavity impedances	50 Ohms	QZ	377 Ohms
Drift space lengths	2 cm	d	50 cm
Drift space radius multipliers	0	χr	1
Drift space EM coupling multipliers	0	χς	1

Methodology: Computational Approach

Check that drift space radius bounds satisfy constraints:

$$\left(0.95\frac{0.383c}{f_{0,m}}\right) - (r_o + 0.2cm) \ge 0$$

Compute drift space radii:

$$r_{w,m} = \chi_{r,m} \left(0.95 \frac{0.383c}{f_{0,m}} \right) + (1 - \chi_{r,m})(r_o + 0.2cm)$$

Check that limiting currents are not exceeded:

$$17000 \left[\left(1 + \frac{V_0}{mc^2} \right)^{\frac{2}{3}} - 1 \right]^{\frac{3}{2}} \left[1 - 2 \left(\frac{r_i^2}{r_o^2 - r_i^2} \log \frac{r_o}{r_i} - \log \frac{r_w}{r_0} \right) \right]^{-1} - I_0 \ge 0$$

Methodology: Computational Approach

- Compute electromagnetic coupling coefficients
- Compute beam coupling coefficients
- Compute harmonic operator coefficients
- Construct the NxN matrix A(ω)
 - Elements are polynomials in ω , represented by their coefficients
- Reduce $A(\omega)$ to lower triangular form:
 - For rows i = N-1 down to 1, and each element $[A(\omega)]_{i,i}$ in row i
 - Multiply by [A(ω)]_{i+1,i+1}
 - Subtract [A(ω)]_{i,i+1} [A(ω)]_{i+1,j}
 - det ([A(ω)]) is now stored in [A(ω)]_{1,1} as a polynomial in ω of degree 2N
- Use Laguerre's method to find roots of det(A[ω)])
- Choose root ω s.t. Re[ω] > 0 and Im[ω] is minimized
- Assign $Im[\omega]$ as the fitness of the candidate design

Methodology: EA Parameters

- Standard GENOCOP operator parameters
 - 5 (necessarily feasible) individuals in reference population
 - 20 (possibly feasible) individuals in search population
 - 10,000 (x2) evaluations per experiment
 - •
- 50 independent experiments => 500,000 evaluations
- Wall clock time (Pentium II, 233 MHz, NT) ≈ 14 hours

Results: High Growth-Rate, Non-Intuitive Designs

• Each experiment found high growth-rate designs

- In comparison to a 10 cavity version of one good 2 cavity design, for which the growth rate is 1.30 nsec⁻¹
- Best growth rate in these experiments is 2.07 nsec⁻¹
- Enhanced growth rates of 10-cavity design allow pure oscillator operation (two-cavity design requires injection-locked operation)
- Designs are non-intuitive (typical of EA-based design)
 - Parameters differ significantly between cavities, and between drift spaces
- Best designs from various experiments are dissimilar
 - Suggests the EA designs may be far from the global optimum

Conclusions

- Theoretical model of signal growth rate in a multi-cavity RKO developed, incorporating electromagnetic and beam coupling effects
- Computational model manipulates arrays of polynomials to find determinant of interaction matrix, then uses Laguerre's method to find resonant frequencies and accompanying growth rates
- GENOCOP, a real-valued EA, using independent linear constraints on design parameters and standard algorithm parameters, identifies designs with growth rates that are significantly higher than intuitive designs

Future Directions

- Perform PIC simulations of best designs
- Improve theoretical and computational models
 - Consider limiting currents at cavity gaps
 - Assign non-zero fitness to designs violating constraints
 - Reduce beam current to smallest limiting current
 - Reduce beam radius to fit within narrowest drift space
 - Consider mode competition and sensitivity to design parameters
- Improve effectiveness and efficiency of optimization
 - Hybridize with local search (e.g. conjugate gradient)
 - Consider other optimum-seeking techniques
 - Reduce the number of roots found

References

- Hendricks, Coleman, Lemke, Arman, and Bowers, *Physical Review Letters*, vol 76, no 154, 1996.
- Luginsland, Lau, Hendricks, and Coleman, *IEEE Transactions on Plasma Science*, vol 24, no 3, 1996.
- Michalewicz, <u>Genetic Algorithms + Data Structures =</u> Evolution Programs, Springer-Verlag, New York, 1992.