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Background:  RKO
(Hendricks, et al., 1996)

• Transverse 
electron motion 
restricted by static 
magnetic field

• First cavity driven
by external RF 
source

• RF gap voltage 
modulates electron 
beam velocity

• Coupled booster 
cavity enhances AC 
component 
(Luginsland, et al, 
1996)
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Background:  
Evolutionary Algorithms

• Inspired by processes of natural selection
• Population initialized as collection of random individuals
• Individuals evaluated according to fitness function
• Genetic operators applied to population

• Selection:  Offspring population biased toward more fit individuals
• Recombination:  Features from multiple parents combined in offspring
• Mutation:  Random variation added to offspring

• Applied successfully as optimum-seeking techniques
• Useful for objective functions that are discontinuous, nonconvex, ...
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Methodology:  
Multi-cavity RKO Model

• Model evolution of gap voltages including effects of:
• Cavity resonances
• Electromagnetic coupling
• Beam coupling

• Assumptions
• Small signal, modal, steady-state solutions

⇒Superposition principle applies to beam modulation
• Cavity coupling is weak and occurs through cutoff waveguide

⇒Only nearest neighbor electromagnetic coupling is significant

• Generalizes Luginsland’s dispersion relation model of the 
two-cavity RKO (Luginsland, 1996) to the N-cavity RKO

• Cavities may have distinct natural frequencies, qualities, and impedances
• Drift regions may have distinct radii, lengths, and loss coefficients



Methodology:  
Multi-cavity RKO Model

Assuming solutions e-jωt, the gap voltage Vm satisfies
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and the beam coupling coefficient is

the electromagnetic coupling coefficient is
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where the damped harmonic oscillator operator is
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Methodology:  
Multi-cavity RKO Model

• The evolution of the cavity voltages V=(V1, V2, …, VN)T are 
thus described by [A(ω )]V = 0, where
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• Resonant frequencies ω satisfy det[A(ω)] = 0
• det[A(ω)] is a polynomial of degree 2N in ω
• - Im[ω] is the mode’s growth rate, to be maximized



Methodology:  GENOCOP III 
(Michalewicz, 1992)

• Public domain UNIX-based real-valued EA used widely and 
successfully for parameter optimization problems

• Minimization and maximization problems
• Constraints:  

• linear equality, 
• linear inequality, and 
• non-linear inequality

• Operators:  
• selection:  exponential ranking
• crossover: whole and simple arithmetic
• mutation:  uniform, boundary, non-uniform, and whole non-uniform

• Maintains separate “reference” population of feasible individuals; 
highly fit but infeasible individuals are occasionally recombined with 
reference individuals



Methodology:  Independent 
Variables and Domains 

Identify candidate designs
• Represented as vectors of independent variables:

(V0, I0, ri, ro-ri,
f0,1,…,f0,N,Q1,…,QN,Q1Z1,…,QNZN,

d1,…,dN-1, χr,1 ,…, χr,N-1 , χc,1 ,…, χc,N-1 )T

• Components satisfy variable domain constraints:

Quantity
Lower
bound Variable

Upper
bound

Beam voltage 300 kV V0 650 kV
Beam current 5 kA I0 35 kA
Beam inner radius 0.1 cm ri 12 cm
Beam thickness 0.1 cm ro - ri 1 cm
Cavity natural frequencies 1 GHz f0 2 GHz
Cavity qualities 50 Q 500
Cavity impedances 50 Ohms QZ 377 Ohms
Drift space lengths 2 cm d 50 cm
Drift space radius multipliers 0 χr 1
Drift space EM coupling multipliers 0 χc 1



Methodology:  
Computational Approach 
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Check that drift space radius bounds satisfy constraints:
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Compute drift space radii:

Check that limiting currents are not exceeded:



Methodology:  
Computational Approach

• Compute electromagnetic coupling coefficients
• Compute beam coupling coefficients
• Compute harmonic operator coefficients
• Construct the NxN matrix A(ω)

• Elements are polynomials in ω, represented by their coefficients

• Reduce A(ω) to lower triangular form:
• For rows i = N-1 down to 1, and each element [A(ω)]i,j in row i 

• Multiply by [A(ω)]i+1,i+1

• Subtract [A(ω)]i,i+1 [A(ω)]i+1,j

• det ([A(ω)]) is now stored in [A(ω)]1,1 as a polynomial in ω of degree 2N

• Use Laguerre’s method to find roots of det(A[ω)])
• Choose root ω s.t. Re[ω] > 0 and Im[ω] is minimized
• Assign Im[ω] as the fitness of the candidate design



Methodology:  EA Parameters 

• Standard GENOCOP operator parameters
• 5 (necessarily feasible) individuals in reference population
• 20 (possibly feasible) individuals in search population
• 10,000 (x2) evaluations per experiment
• ...

• 50 independent experiments => 500,000 evaluations
• Wall clock time (Pentium II, 233 MHz, NT) ≈ 14 hours



Results:  High Growth-Rate, 
Non-Intuitive Designs 

• Each experiment found high growth-rate designs
• In comparison to a 10 cavity version of one good 2 cavity design, for 

which the growth rate is 1.30 nsec-1

• Best growth rate in these experiments is 2.07 nsec-1

• Enhanced growth rates of 10-cavity design allow pure oscillator operation 
(two-cavity design requires injection-locked operation)

• Designs are non-intuitive (typical of EA-based design)
• Parameters differ significantly between cavities, and between drift spaces

• Best designs from various experiments are dissimilar
• Suggests the EA designs may be far from the global optimum



Conclusions

• Theoretical model of signal growth rate in a multi-cavity 
RKO  developed, incorporating electromagnetic and beam 
coupling effects

• Computational model manipulates arrays of polynomials 
to find determinant of interaction matrix, then uses 
Laguerre’s method to find resonant frequencies and 
accompanying growth rates

• GENOCOP, a real-valued EA, using independent linear 
constraints on design parameters and standard algorithm 
parameters, identifies designs with growth rates that are 
significantly higher than intuitive designs



Future Directions

• Perform PIC simulations of best designs

• Improve theoretical and computational models
• Consider limiting currents at cavity gaps
• Assign non-zero fitness to designs violating constraints

• Reduce beam current to smallest limiting current
• Reduce beam radius to fit within narrowest drift space

• Consider mode competition and sensitivity to design parameters

• Improve effectiveness and efficiency of optimization
• Hybridize with local search (e.g. conjugate gradient)
• Consider other optimum-seeking techniques
• Reduce the number of roots found
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