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• The relativistic klystron oscillator (RKO) is a high power microwave (HPM) source in 

which the kinetic energy of a relativistic electron beam is converted into coherent 
microwave radiation.  Two theoretical models are developed relating the growth rate of 
the microwave output power to the design parameters.  One of the models generalizes 
easily to a novel multi-cavity class of RKO devices, which has significantly better growth 
rates than standard two-cavity RKOs.

• Optimization of the growth rate via analytical and standard numerical techniques is 
intractable because of the existence of many local optima.  Instead, the growth rate is 
optimized using a real-valued evolutionary algorithm (EA), which performs mutation, 
selection, and recombination on a population of candidate design parameters.  

• The design space of the McRKO is subject to a number of nonlinear constraints.  
Several methods of incorporating these non-linear constraints in the EA are compared, 
including a penalty function, a “blind” repair mechanism, and a domain specific repair 
mechanism.  The latter is shown to result in significantly better designs.
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Background:  RKO
(Hendricks, et al., 1996)

• High-power 
microwave source

• Transverse 
electron motion 
restricted by static 
magnetic field

• First cavity driven 
by external RF 
source

• RF gap voltage 
modulates electron 
beam velocity

• Coupled booster 
cavity enhances 
AC component 
(Luginsland, et al, 
1996)
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Background:  Evolutionary 
Algorithms

• Inspired by processes of natural selection.
• Population initialized as collection of random individuals.
• Individuals evaluated according to fitness function.
• Genetic operators applied to population.

– Selection:  Offspring population biased toward more fit individuals.
– Recombination:  Features from multiple parents combined in 

offspring.
– Mutation:  Random variation added to offspring.

• Applied successfully as optimum-seeking techniques.
– Useful for objective functions that are discontinuous, nonconvex, ...
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Background:  GENOCOP 
(Michalewicz, 1992)

• Public domain, UNIX-based, real-valued EA 
• Used widely and successfully for parameter 

optimization problems
– Offers a wide variety of selection, recombination, and mutation 

operators shown to be effective in practice
• Supports constrained minimization and maximization 

problems
– Constraint types:  non-linear equality, linear and non-linear 

inequality, domain constraints
– Maintains separate reference population of individuals 

satisfying the specified constraints
– Highly fit search individuals are occasionally recombined with 

reference individuals to produce new reference individuals



Methodology:  RKO Circuit Model
(Schiffler, et al., 1998)

• Bridge parameters L1, 
C1, and C2 determined by 
gap separation based on 
energy principles

• “Cold tube” resonant 
frequencies ω found from 
Im[Y] = 0
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Methodology:  RKO Growth Rate
(Luginsland, et al., 1996)

Coupling constant C determined by the ratio Re[ω/ω0] of 
the cold tube resonant frequency to the natural frequency 
and the cold tube growth rate relationship
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Beam voltage V0 and current I0 determine parameters R 
and Z; together with gap separation d determine θ and kp.  
Growth rate Im[ω] is determined by 



Methodology:  
Independent Variables and Domains 

• Limited set of parameters varied:  
– Beam voltage V0

– Beam current I0

– Gap separation d

• Independent linear constraints (domains):  
– 400 kV ≤ V0 ≤ 650 kV
– 5 kA ≤ I0 ≤ 35 kA
– 2 cm ≤ d ≤ 50 cm



Methodology:  GENOCOP Operators

• Selection:  
– Exponential ranking 

• Mutation:  
– Uniform mutation
– Boundary mutation
– Non-uniform mutation 
– Whole non-uniform mutation

• Recombination:  
– Whole arithmetic crossover
– Simple arithmetic crossover



Results:  Growth Rate 
“Optimized” Easily 

• 50 independent experiments
– 70 individuals 
– 500 generations
– 2 evaluations per individual per generation 
– ⇒ 3.5 million total evaluations
– Wall clock time (233 MHz P-II, MS Windows NT 4.0) ≈ 1 hr

• Many experiments found high growth-rate designs 
near V0 = 400 kV, I0 = 25 ka, d = 9.4 cm

• Comparison to other designs:
V0 (kV) I0 (kA) d (cm) Growth Rate

400 12 8.4 -1.87e6
600 24 8.4 -1.45e6
400 12 11.0 -2.76e6
400 25 9.4 -9.79e6

 

 



Results:  
MAGIC Simulations

Simulation of EA’s best design confirms high growth rate, 
predicts virtual cathode formation and corresponding shutoff



Methodology:  
Dispersion Relation Model of the 

Multi-cavity RKO 
• Based on Luginsland’s dispersion relation model of the two-cavity 

RKO (Luginsland, 1996) 
• Models evolution of gap voltages including effects of:

– Cavity resonances
– Electromagnetic coupling
– Beam coupling

• Assumptions
– Small signal, modal, steady-state solutions

⇒Superposition principle applies to beam modulation
– Cavity coupling is weak and occurs through cutoff waveguide

⇒Only nearest neighbor electromagnetic coupling is significant
• Generalizes model to the n-cavity RKO

– Cavities may have distinct natural frequencies, qualities, and 
impedances

– Drift regions may have distinct radii, lengths, and loss coefficients



Methodology:  
Non-linear Multi-cavity RKO Model

Assuming solutions of the form e-jωt, the gap voltage Vm satisfies
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and the beam coupling coefficient is

the electromagnetic coupling coefficient is
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Methodology:  
Non-linear Multi-cavity RKO Model

• The evolution of the cavity voltages V=(V1, V2, …, VN)T is thus described 
by [A(ω )]V = 0, where
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• Resonant frequencies ω satisfy det[A(ω)] = 0
• det[A(ω)] is a polynomial of degree 2N in ω
• - Im[ω] is the mode’s growth rate, to be maximized



Methodology:  Evaluation of 
Candidate Designs 

• Repair or penalize design if
– Limiting current is exceeded
– Beam radius (almost) exceeds waveguide radius

• Compute electromagnetic coupling coefficients (C’s)
• Compute beam coupling coefficients (Γ’s)
• Compute harmonic operator coefficients (L’s)
• Construct the NxN matrix A(ω)

– Elements are polynomials in ω, represented by their 
coefficients



Methodology: Evaluation of 
Candidate Designs (Cont.)

• Reduce A(ω) to lower triangular form:
– For rows i = N-1 down to 1, and each element 

[a(ω)]i,j in row i 
• Multiply by [a(ω)]i+1,i+1
• Subtract [a(ω)]i,i+1 [a(ω)]i+1,j

– det ([A(ω)]) is now stored in [A(ω)]1,1 as a 
polynomial in ω of degree 2N

• Use Laguerre’s method to find roots of det(a[ω)])
• Choose root ω s.t. Re[ω] > 0 and Im[ω] is minimized
• Assign Im[ω] as the fitness of the candidate design



Methodology:  
Non-linear Constraints 
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Check that drift space radius bounds satisfy constraints:
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Assuming constraint is satisfied, compute drift space radii:

Check that limiting currents are not exceeded:



Methodology:  
Handling Constraints

Standard EA techniques include 
• Penalty functions

– Assign zero fitness if limiting current is exceeded
– Assign zero fitness if beam diameter greater than specified 

fraction of minimum waveguide diameter
• Repair operators (to evaluate or to replace)

– Reduce current to limiting current
– Reduce beam diameter to fit in waveguide

• Specialized mutation and recombination operators that 
maintain satisfaction of specified constraints
– Computationally expensive in this application



Methodology:  
Handling Constraints in GENOCOP

If constraints are specified to match physical constraints:
• All individuals in reference population satisfy specified 

constraints
– Initial population therefore satisfies physical constraints

• Penalty function does not affect individuals that satisfy 
physical constraints
– In particular, it does not affect reference population

• Operator that recombines search individuals with 
reference individuals must ensure specified constraints 
are satisfied
– GENOCOP provides “blind” operators based on convex 

combinations
– A domain specific operator can be used that changes only the 

necessary parameters of the search individual.



Methodology:  
Handling Constraints in GENOCOP

If constraints are not specified:
• Individuals in reference population are not constrained

– Initial population is unlikely to contain any individuals that 
satisfy physical constraints

• Penalty function affects individuals that do not satisfy 
physical constraints
– Initial population is likely to have all zero fitnesses

• Evaluation of individuals requires either a penalty 
function or a repair operator

• No real distinction between search and reference 
populations



Methodology:
Handling Constraints 

• Eight methods of constraint handling used:
• Constraints

– Unspecified, or
– Specified to match physical constraints

• Evaluation of individuals not satisfying physical 
constraints
– Penalized (zero fitness), or
– Repaired (beam current and radius adjusted)

• Recombination of search and reference individuals
– Blind convex operator, or
– Heuristic operator (beam current and radius adjusted)



Methodology:  
Independent Variables and Domains 

• Identify candidate designs, represented as vectors of 
independent variables:

(V0, I0, ri, ro-ri,
f0,1,…,f0,N,Q1,…,QN,Q1Z1,…,QNZN,

d1,…,dN-1, χr,1 ,…, χr,N-1 , χc,1 ,…, χc,N-1 )T

Quantity
Lower
bound Variable

Upper
bound

Beam voltage 300 kV V0 650 kV
Beam current 5 kA I0 35 kA
Beam inner radius 0.1 cm ri 12 cm
Beam thickness 0.1 cm ro - ri 1 cm
Cavity natural frequencies 1 GHz f0 2 GHz
Cavity qualities 50 Q 500
Cavity impedances 50 Ohms QZ 377 Ohms
Drift space lengths 2 cm d 50 cm
Drift space radius multipliers 0 χr 1
Drift space EM coupling multipliers 0 χc 1



Methodology:  
Computational Experiments 

• 8 sets of experiments varying constraint handling
• For each constraint handling technique:

– 50 independent runs of 100,000 generations each
– 5 individuals in reference population
– 20 individuals in search population
– 2 evaluations per individual per generation ⇒ 250 million total 

evaluations
– Wall clock time (750 MHz P-III, Red Hat Linux 7) ≈ 14 hrs



Results: High Growth-Rate, 
Non-intuitive, and Dissimilar Designs 

• Each experiment found high growth-rate designs
– For comparison, a 10 cavity version of one good two-cavity design has 

a growth rate of 1.30 nsec-1

– Best growth rate is 2.40 nsec-1

– Enhanced growth rates of 10-cavity design allow pure oscillator 
operation (two-cavity design requires injection-locked operation)

• Designs are non-intuitive (typical of EA-based design)
• Best designs from various experiments are dissimilar

– Parameters differ significantly between cavities, and between drift 
spaces

– Dissimilar results suggest the EA designs may be far from the global 
optimum (some similarity in beam voltage and cavity frequencies)



Results: 
Constraint Handling Techniques 

• Growth rates of best designs from each technique compared to 
other best designs using Kruskal-Wallis test

– Heuristic recombination better than blind recombination (at 0.05
level of significance)

– Repair to evaluate better than penalty function (at 0.10 level of 
significance

• Effective combinations:
– Heuristic recombination and repair to evaluate
– Specified constraints and heuristic recombination 
– Specified constraints, heuristic recombination, and repair to evaluate
– Unspecified constraints, blind recombination, and repair to evaluate

• Ineffective combinations
– Blind recombination and penalty function
– Specified constraints and blind recombination
– Specified constraints, blind recombination, and repair to evaluate
– Specified constraints, blind recombination, and penalty



RKO Circuit Model 
Summary and Conclusions

• Summary:
– RKO circuit model and RKO growth rate model related 

through resonant frequencies to predict growth rate as a 
function of a limited set of design parameters :  V0, I0, d

– GENOCOP, a real-valued EA, using independent linear 
constraints on design parameters and standard algorithm 
parameters, identifies designs with growth rates that are 
significantly higher than previously investigated designs

• Conclusions:
– Optimization of HPM device designs via EA is feasible
– MAGIC simulations of EA-identified designs indicate that they 

are adversely affected by non-linear phenomena, such as 
virtual cathode formation

– One method for treating non-linear phenomena is the 
specification of non-linear constraints



RKO Dispersion Relation Model 
Summary

• Theoretical model of signal growth rate in a multi-
cavity RKO  developed, incorporating electromagnetic 
and beam coupling effects

• Computational model manipulates arrays of 
polynomials to find determinant of interaction matrix, 
then uses Laguerre’s method to find resonant 
frequencies and accompanying growth rates



RKO Dispersion Relation Model 
Conclusions

• GENOCOP, a real-valued EA, using independent 
linear constraints on design parameters and standard 
algorithm parameters, identifies designs with growth 
rates that are significantly higher than intuitive designs

• A version of GENOCOP with a domain specific repair 
operator for recombination of search and reference 
individuals identifies even better designs

• Design optimization via EA pays off in two ways
– Better designs
– Improved understanding of models



Future Directions

• Improve diagnostic output of GENOCOP
– Fitness statistics (for search and reference)
– Diversity measures (for search and reference)

• Improve effectiveness and efficiency of optimization
– Hybridize with local search (e.g. conjugate gradient)
– Consider other optimum-seeking techniques
– Reduce the number of roots found

• Improve theoretical and computational models
– Consider limiting currents at cavity gaps
– Consider mode competition and sensitivity to design 

parameters
• Perform PIC simulations of best designs
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