
1. Introduction

Many simulation models require an unsatisfactory 
amount of time when run on a single processor. 
Parallelizing these simulations provides the requisite 
computational resources to achieve the desired 
running time, but also introduces communications 
costs that can outweigh the gains of parallelization. 
Load-balancing algorithms attempt to find the optimal 
tradeoff between placing simulation objects together 
to reduce communication costs and distributing them 
to gain parallelism. Static load-balancing algorithms 
assign simulation objects to processors before the 
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simulation begins. Dynamic load-balancing algorithms 
use run-time information to change the allocation during 
the simulation. 
 Although it has been stated that it is preferable to use 
dynamic load balancing, static load-balancing schemes 
are attractive because of their simpler implementation 
and reduced cost at run time [1,2]. Furthermore, in certain 
cases static load-balancing schemes are competitive with 
dynamic load balancers [2]. Our simulation uses the 
SPEEDES framework [3], which uses an object-oriented 
computational model. A simulation model is created by 
defining simulation objects, object managers for them, 
and events. Object managers have the ability to control 
the placement of the simulation objects on processors; 
therefore, it is simple to implement a static load-balancing 
scheme, and previous research has found such schemes  JDMS, Vol. 1, Issue 1, April 2004 Page 59–68
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to be effective [4].
 The simulation is of a single theater missile defense 
mission. Theater missile defense systems are deployed 
with troops to protect the troops from enemy missile 
attack. Theater missile defense systems [5] that are 
currently deployed and are represented in the simulation 
include the Patriot, Theater High Altitude Area Defense 
system (THAAD), Aegis, and others. Simulating 
these systems allows the DoD to develop strategies 
for the use of these systems without the expense of 
staging exercises with the real equipment, and to 
evaluate potential new missile defense acquisitions. 
The simulation in this work is actually used for joint 
exercises.
 Figure 1 represents the simulated battlespace. The 
theater is divided into regions, with each region having 
its own battle manager, who is responsible for defending 
assets within the region. A theater manager coordinates 
the defense. This is important because a region that 
is under significant attack may need assistance from 
other regions between it and the attacker. For example, 
if the easternmost region in Figure 1 is under attack 
from an enemy to the west of the battlespace, the other 
three regions may have the opportunity to shoot down 
the incoming missiles.

Figure 1. An example battlespace

 Each battle manager has launcher(s) under its control 
(e.g., Patriot batteries). Each of those launchers has a 
certain number of interceptors. Incoming threats are 
referred to as missiles. Each of these real-world objects 
is modeled as an object in the simulation. Additionally, 
a simulation object, the ThreatFactory, is used to 
launch missiles, and other simulation objects perform 
I/O. Together, there are approximately 3,000 objects in 
the simulation, which simulates a 25-minute attack.
 Although the simulation provides automated battle 
managers, it also allows humans to play these roles. 
The simulation has been modified to provide a “human-
in-the-loop” mode, which throttles simulation time to 

real time. This distributed interactive simulation has a 
different goal for load balancing. When the computer is 
managing the battle, our goal is to minimize CPU time. 
On the other hand, when people play the part of the 
battle managers, our goal is to prevent the simulation 
from falling behind real-time (so that the players do not 
see delays while managing the battle). 
 The particular scenario used in this paper represents 
a desired wargame exercise for which the performance 
was unsatisfactory. There is continuous pressure to add 
more simulation objects to the simulation and increase 
the realism of the simulation. Previously, this simulation 
used the SPEEDES default layout of objects, a “card-
dealing” algorithm where objects are distributed one at a 
time to each processor in turn. Occasionally, they would 
manually “stack the deck” to obtain better performance. 
This was a time-consuming process that would have to 
be redone for each new simulation, so it was desired to 
have an automated strategy for accomplishing this. We 
implemented two previous algorithms and designed 
two new algorithms for automated load balancing. Our 
algorithms use a small amount of domain knowledge 
to create an allocation. These algorithms require data 
from a benchmark simulation and use those results for 
subsequent runs.
 Section 2 compares our work to previous algorithms 
for automated load balancing. Section 3 describes the 
two existing algorithms we implemented and the two 
new algorithms we devised for statically load balancing 
this simulation. Section 4 reports on the performance 
of these algorithms, using the goals of minimizing total 
simulation time and real-time lag. Finally, Section 5 
provides conclusions and ideas for future work.

2. Related Work

Significant work has been done previously on the 
problem of load balancing objects in a simulation. 
One unique aspect of our work is that we are not only 
interested in possible speedup, but also the real-time lag 
of the simulation. The most closely related work was 
done by Wilson and Nicol [4]. They presented three 
algorithms for automatically allocating simulation 
objects to processors using the same simulation 
framework, SPEEDES. As with our work, they require 
data from a benchmark run of the simulation to create 
an allocation for subsequent runs. We implemented 
two of these algorithms and compare results of our new 
algorithms to these algorithms. We demonstrate that 
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adding domain-specific knowledge to merge objects 
before performing the allocation generates improved 
performance.
 Boukerche and Tropper [17] also perform a static 
partitioning of the simulation objects. They use a 
simulated annealing algorithm. This starts with an 
initial partition and refines that partition. One of the 
algorithms we propose uses a genetic algorithm to 
perform a similar refinement. Their work was done in 
the context of conservative simulations.
 Gan, et al. [10] discussed using a combination 
of static and dynamic loadbalancing schemes. In 
particular, the static schemes they used were Metis 
[16] and Scotch [14]. Following Gan’s approach, we 
peformed a graph partitioning using the simulation 
objects as nodes of the graph, and the edges weighted 
using various functions of the communications between 
those objects. Unfortunately, applying Gan’s methods 
to our simulation did not provide an improvement 
over the default SPEEDES allocation. This may be 
a consequence of using an optimistic simulation 
engine, where rollbacks may have a cascading effect 
on the running time of the simulation, even though the 
communications that caused the rollback do not weigh 
heavily in the functions.
 Vee and Hsu [15] also note the importance of 
preserving locality (i.e., minimizing the number of inter-
processor messages) when performing load balancing. 
However, they assume that the simulation model has 
already been decomposed into a number of submodels, 
or logical processes (LPs), before their load-balancing 
strategy begins. Our scheme uses domain-specific 
knowledge to, in essence, create LPs which can then 
be load balanced.
 Som and Sargent [9], although they focus on dynamic 
load balancing, also provide a pre-processing phase to 
combine simulation objects into what they refer to as 
strong groups. These strong groups are computed by 
examining a directed graph between simulation objects, 
where the edges are placed from an object to another 
when the first object places something in the queue of 
the second. They then remove some edges if they are 
deemed to be infrequent. Our research demonstrates 
that domain-specific knowledge can provide improved 
performance when strong groups cannot be determined 
automatically from the simulation.

3. Algorithms

Inputs for the load-balancing algorithms were obtained 
by tracing a representative simulation. As with all static 
load-balancing schemes, the quality of the output of the 
balancing algorithm is dependent on how representative 
the trace is. In our situation, we are guaranteed a very 
representative trace as the scenario for a human-in-the-
loop wargaming exercise is decided in advance. To 
obtain this trace, the simulation was instrumented such 
that the following information is available for each 
committed event: the simulation object processing the 
event, the amount of CPU time consumed by the event, 
and the details of simulation events scheduled by the 
processing of this event.  From this data, the following 
summary statistics were computed: the total CPU time 
consumed by each simulation object, the number of 
messages sent from each simulation object to every 
other simulation object, and the amount of CPU time 
consumed by each simulation object per five seconds 
of simulation time. The simulation models a 1,500 
second battle; the five-second granularity was chosen 
to provide acceptable scheduling effectiveness while 
satisfying memory constraints. 
 Each algorithm described below takes as input 
the summary statistics, and produces as output a 
configuration file for SPEEDES with a complete 
allocation of simulation objects to processors. Since 
the file I/O of recording the trace data has a significant 
impact on the performance of the simulation (the trace 
files record hundreds of megabytes of data), tracing is 
disabled while allocations are being evaluated.

3.1 Lballoc1

Wilson and Nicol [4] proposed Lballoc1 as an 
algorithm for doing static load balancing while ignoring 
communication between simulation objects. Lballoc1 
is a direct application of a bin-packing heuristic to load 
balancing, in which the processors are viewed as the 
bins into which the simulation objects must be packed. 
Specifically, each processor is viewed as a bin with 
unlimited capacity, and the size of each simulation 
object is its total measured CPU time. Thus, Lballoc1 
considers each object in order of decreasing CPU time, 
and allocates it to the currently most lightly loaded 
processor.
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Consider the following set of simulation objects:

Lballoc allocates them in order of decreasing CPU time (left to right), looking only at the amount of CPU time 
currently allocated to each processor and selecting the smallest. So, on four processors, the final allocation would be:

The total CPU times allocated to the processors are: 105, 106, 109, 107.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time
50 49 48 46 42 37 31 29 25 23 15 14 9 5 3 1

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU
1 2 3 4 4 3 2 1 1 2 3 4 3 4 2 1

3.2 Lballoc2

Lballoc2, also by Wilson and Nicol [4], is a more 
complicated algorithm that seeks to place objects 
that communicate frequently together on the same 
processor. The first portion of the algorithm arranges 
the objects into a linear chain. This chain is built by 
performing a stable marriage algorithm [6] repeatedly 
on the objects. The attraction of each object to every 
other is determined by the number of communications 
between them. Each application of the stable marriage 
algorithm reduces the number of simulation objects by 
half. Then, for the next application, the attractions are 
computed as the sum of communications between the 
objects making up the merged objects. After ceiling 
(log

2
n) marriage phases, a single merged object is 

obtained. These merges can be viewed as creating a 
binary tree, where each original object is at a leaf, and 

then the linear chain is obtained by a simple depth-first 
traversal. An allocation to p processors is obtained by 
splitting the chain at the p-1 locations that most evenly 
balance the load across the processors.
 The following example demonstrates the design of 
Lballoc2. Consider the tree of simulation objects given 
in Figure 2.
 The first level of the tree would occur if the pair of 
objects that communicates most are 8 and 2, the next 
pair (not including 8 and 2) is 4 and 1, etc. Then in the 
next phase pairs of simulation objects are considered 
(so the pair {8,2} communicates most with the pair 
{4,1}). The process repeats until there is only a single 
simulation object. An in-order traversal of the tree 
creates an ordering of the objects, {8,2,4,1,5,7,6,3}, 
and this ordering is partitioned across the processors 
to minimize the amount of work on the most heavily 
loaded processor.

3.3 Adding Domain-Specific Knowledge

In the missile defense simulation, the battle manager 
objects perform the vast majority of communications. 
Each battle manager must coordinate its actions 
with and report its status to all of the other battle 
managers. This coordination generates a large number 
of messages. These large numbers of communications 
between battle managers mask the optimizations that 
can be attained by co-locating the battle managers with 
other types of objects, e.g., the interceptor launchers 
associated with the managers. Lballoc2 misses these 
optimizations. For large simulations, it may often be the Figure 2. A tree of simulation objects
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case that there are groups of objects of different types 
that are communicate frequently, and correspondingly 
should be co-located in the simulation to obtain the 
best performance.
 We allow the user to specify domain-specific 
knowledge about the relationships of objects of different 
classes. For an object class, we can specify that each 
object of that class should be merged with an object of 
a different class. For example, in our simulation, we 
specified that each launcher should be merged with a 
battle manager. We can also specify which direction 
of communication to consider. That is, we can either 
merge each launcher with the battle manager that sends 
the most messages to it, or we can merge each launcher 
with the battle manager to which it sends the most 
messages. In our simulation, we specified the following 
four merge phases:

 1. Merge each Launcher with the Battle 
  Manager  to which it sends the most  
  messages. 
 2. Merge each Sensor with the Battle  
  Manager to which it sends the most  
  messages. 
 3. Merge each Interceptor with the  
  Launcher that sends it the most messages. 
 4. Merge each Missile with the Interceptor  
  that sends it the most messages.

 Once the merges are complete, any load-balancing 
algorithm can be used to distribute the computation 
amongst the processors. We considered two such 
algorithms: the same bin-packing strategy as used in 
Lballoc1, and a genetic algorithm.

   3.3.1 Bin-pack Merged

Bin-packing is an example of an NP-Hard problem, 
which unlike many others, has a heuristic solution 
that can be proven worst-case to be within a constant 
factor of two of the optimal (the number of bins used is  
never more than twice the optimal). Furthermore, 
empirical studies have shown that the best-fit decreasing 
heuristic generally produces good solutions, and 
compares favorably with other heuristics [7]. Thus, 
if the merges give us good communication across 
processors, combining this with bin-packing should 
provide a balanced approach. This algorithm performs 
the merge phases described above, sorts the merged 
objects by decreasing CPU time, and then allocates 
the objects in order to the least loaded processor.

   3.3.2 Genetic Merged

Since objects in the simulation do not contribute to 
the computation load throughout the simulation time 
(e.g., an interceptor only requires CPU time for the 
interval in which it is in flight), it seemed possible 
that an allocation that balanced the total load might 
inadvertently schedule too much work in particular time 
intervals. For example, consider the case where there 
are 25 simulation objects, where each simulation object 
is active for only a single second of the five seconds 
of simulation time. Suppose the first five objects are 
active for the first second, the second five the second 
second, etc. Considering only the total load, a perfect 
balance for five processors would be to place the first 
five on the first processor, the second five on the second 
processor, etc. Unfortunately, in this case we actually 
achieve no parallelism, since only one processor is 
active for each five seconds of simulation time. To 
avoid this, we designed a genetic algorithm (GA) that 
considered CPU time across intervals of five seconds 
of simulation time. Genetic algorithms (GAs) are a 
form of computation inspired by theories of evolution. 
This places them in the class of algorithms called 
Evolutionary Algorithms (EAs). In a landmark paper 
[11], Bäck and Schwefel provide an excellent review 
of evolutionary algorithms, including a historical 
perspective and a formal definition attempting to unify 
them. Merkle and Lamont generalized the definition to 
provide a more rigorous version that precisely captures 
the essential nature of EAs [12]. 
 In GAs, data structures called individuals are used 
to represent possible solutions to a problem. In our 
problem, each individual is a possible allocation. This 
data structure is simply an array indicating, for each 
object, to which processor it is assigned. With a large 
number of simulation objects, this makes for quite large 
individuals in the GA, but this had no noticeable effect 
on the effectiveness or efficiency of the algorithm on 
the problem instances of interest.
 The most distinguishing characteristic of GAs is 
that they manipulate collections of individuals, called 
populations, and that the operations performed on 
each individual may depend on the other individuals 
in the population. This is because the operations 
are inspired by the concepts of the theory of natural 
evolution, including fitness, selection, mutation, and 
recombination. 
 The concepts of fitness and selection are closely 
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related, as are the fitness functions and selection 
operators that are inspired by those concepts and used 
in GAs. The fitness function assigns each individual a 
“fitness” based on some evaluation of the solution that it 
represents. In the case of optimization problems, which 
are perhaps the most common application area for GAs, 
the fitness function is related somehow to the objective 
function of the problem. The specific relationship 
between an individual and the objective function is one 
of the design issues involved in applying GAs. Once the 
fitness of each individual has been assigned, a selection 
operator randomly selects individuals from the current 
population to copy into the next population. More fit 
individuals have higher probabilities of selection. Early 
GAs used fitness-proportionate selection operators, 
meaning that the expected number of copies of each 
individual in the next population was proportional to 
its fitness (normalized by the average fitness). This 
approach has a number of theoretical shortcomings, 
so few modern GAs use it. Instead, they use selection 
operators for which the behavior is invariant to scaling 
and translation of the fitness function. The selection 
operator used in this research, binary tournament 
selection, is both scale and translation invariant and is 
used fairly commonly.
 Mutation operators randomly alter individuals as a 
means of exploring the search space in neighborhoods of 
known good solutions. In the case of GAs, it is common 
to “flip” each bit in the string with a probability called 
the mutation rate. Traditionally this probability is quite 
small, with the intent of investing a small amount of 
computational resources in searching locally in the 
vicinity of solutions that are presumably relatively 
good. However, it is now commonly recognized that 
for some applications, including the one described in 
this article, greater effectiveness can be achieved by 
using non-traditional (i.e., larger) mutation rates. It is 
also fairly common to incorporate domain knowledge 
in the design of specialized mutation operators; 
we use a specialized mutation operator rather than 
simply flipping bits in the binary representation of 
individuals.
 As mentioned above, the feature of genetic 
algorithms that most clearly distinguishes them from 
related algorithms is their manipulation of collections 
of individuals. This manipulation occurs in the form 
of recombination operators, which randomly select 
features from two or more individuals to create new 
individuals. For GAs with fixed-length binary string 
representations, recombination operators are usually 

called “crossover,” and there are several common 
variations. The earliest and easiest to understand is 
single-point crossover, which randomly chooses a 
crossover point within the length of the two individuals 
being recombined, and exchanges the parts of the 
individuals following the crossover point. Two-point 
crossover chooses two crossover points, and exchanges 
the parts of the individuals between the two points. 
Multi-point crossover extends this idea to more than 
two crossover points. As with mutation operators, 
it is common to incorporate domain knowledge in 
the design of specialized crossover operators. The 
research described in this article is an example of that 
approach.
 In successful applications, the combined effect of 
the selection, mutation, and recombination operators 
is to gradually produce populations of individuals that 
represent very good solutions to the underlying problem, 
in analogy to the principle of “survival of the fittest.” 
As previously mentioned, for each simulation object, 
we computed how much CPU time it used during each 
five seconds of simulation time. For our GA’s fitness 
function, we first determined the amount of CPU time 
allocated to the most heavily loaded CPU during each 
five seconds of simulation time. We then added these 
together across all of the five-second intervals. The 
fitness function was a weighted sum of this time total 
with the number of off-processor messages generated 
by the allocation.
 In our GA, each individual represented a possible 
allocation, and each population contained 100 
individuals. The initial population consisted of 
randomly generated individuals. A modified binary 
tournament selection was used to propagate the 
fittest individuals. Specifically, the individuals were 
randomly paired, and one round of a tournament was 
used to generate 50 individuals for this generation. 
Then, the original individuals were randomly paired 
again, and another round of a tournament selected the 
second 50 individuals. Note this guarantees the fittest 
individual of the previous generation appears twice in 
this generation (once from each tournament). Other 
individuals may appear 0, 1, or 2 times in the new 
generation (if there is a unique least fit individual, it is 
guaranteed not to appear).
 For each individual (possible allocation) selected 
for mutation, we randomly redistributed the simulation 
objects between two of its processors. Specifically, 
for each simulation object assigned to one of these 
processors, we moved it to the other with probability 
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one-half. Based on our experiments, we found a mutation 
rate of 30% to generate good results.
 We used a domain-specific crossover operator. In 
each application of the operator, one parent acted first 
as a “donor” while the other acted as an “acceptor” to 
produce one offspring, and then the parents exchanged 
roles to produce a second offspring.  The construction 
of each offspring occurred as follows:

 1. Initialize the offspring by making a copy of the acceptor.
 2. Determine the set S

B
 of objects allocated to the “best” 

  processor by the donor and the set S
W

 of objects  
  allocated to the “worst” processor by the acceptor. The  
  determination was based on a weighted sum of two  
  quantities: the difference between the CPU time  
  allocated to that processor and the average CPU time,  
  and the number of off-processor messages sent by  
  objects allocated to that CPU.
 3. Within the offspring, deallocate all of the objects in  
  S

B
∪S

W
 (necessarily leaving at least one processor of the  

  copy empty).
 4. Within the offspring, allocate all of the objects in S

B
 to  

  an empty processor.
 5. Within the offspring, allocate each of the objects in S

W
- 

  S
B
 using the best-fit heuristic of Lballoc1.

 Crossover was performed on 70% of the population. 
That is, 70% of the individuals were selected randomly 
and mated in pairs. These two parents generated two 
offspring using the method described above. Then, of 
these four (two parents and two offspring), the two best 
were reinserted into the population.
 Experimentally, we found that the results converged 
after about 100 generations (it appeared to be 
approaching an asymptotic limit), so in each case, we 
allowed the genetic algorithm to run for 100 generations 
on the merged objects. Note that each new generation 
does not require an additional run of the simulation on 
the parallel computer. The genetic algorithm runs within 
a few minutes on a single processor (each generation 
required only a couple of seconds).

4. Results

We used three metrics to determine how well our 
allocations performed: wall-clock time, maximum 
real-time lag, and real-time integrated lag. The metrics 
presented represent the average of three runs of the 
simulation. Wall-clock time is obtained by simply 
letting the simulation run as fast as possible, and 
measuring the total elapsed time. Since our simulation 
could be run with people playing the roles of the battle 

managers, we ran the simulation again, throttled to real 
time. For these runs, we measured the maximum real-
time lag (how far did the simulation fall behind real 
time at the worst point), and real-time integrated lag. 
Real-time integrated lag is designed to measure the 
total amount of lag in the simulation. Consider the plot 
of lag across real time given in Figure 3.
 Real-time integrated lag is the sum of the lag areas 
beneath the x axis. The integral is estimated using 
the trapezoid rule given measurements that occur 
every second of real time. Each of these runs was 
performed on a 24 processor SGI Origin 3000 series 
supercomputer, running in isolation mode. We did 
not run SPEEDES on four of the processors so that 
display processes could run on dedicated processors. 
The display processes are not SPEEDES simulation 
objects, but instead constantly update the screen with 
information about the simulation. These processes are 
ignored by our algorithms.
 Figures 4 and 5 show the As Fast As Possible 
(AFAP) simulation time for the four allocation schemes 
we implemented, as well as the results from using the 
default allocation provided by SPEEDES. Note that 
Lballoc2, while generally the worst of the allocation 
schemes we implemented, has the best performance 
on 20 processors. Overall the best performance occurs 
using the bin-pack merged scheme on 16 processors.
 Figure 6 shows the maximum lag behind real-time 
in seconds. Generally the ranking of the algorithms is 
similar for maximum lag; however the best case now 
occurs on 12 processors using the bin-pack merged 
allocation.
 Figures 7 and 8 provide the real-time integrated 
lag for the simulation runs. Again the ranking of the 
algorithms is similar, with the best results occurring on 
12 processors using the bin-pack merged allocation.
 The experimental results were encouraging. For each 
algorithm, the best performance obtained was better 
than the best performance of the SPEEDES default 
scheme on any number of processors. Furthermore, 
the two domain-specific algorithms outperformed 
their counterparts. Not only did the domain-specific 

Figure 3. A sample lead/lag plot across a simulation
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algorithms have better performance, but they also 
obtained this performance using fewer processors.
 Somewhat surprisingly, the bin-pack merged 
algorithm did better than the genetic merged algorithm. 
Analyzing the data, we note that the evaluation 
function for the genetic merged allocation was less 
than 0.5% better than that of bin-pack merged. We 
suspect that the bin-pack merged allocation performed 
better as it tended to cluster the low CPU objects 
together on lightly loaded processors, whereas the 
genetic allocations were more scattered. This is 
important because these low CPU objects, missiles 
and interceptors, publish their information via proxies 
to all of the battle managers. If they are on heavily 
loaded processors, they can force the other processors 
to keep rolling back. An initial test of this hypothesis 
was performed by taking the Lballoc2 allocation on 
20 processors, and scrambing the allocation of the 
missiles for one test, and scrambling the allocation of 
the interceptors for another. Scrambling the allocation 
of the interceptors more than doubled the integrated lag 
(to 3533.79 from 1542.73). Scrambling the allocation 
of the missiles increased the integrated lag by over a 
factor of 10 (to 16466.55 from 1542.73). While these 
results are very preliminary, they suggest that missiles 
and interceptors, despite being both low CPU objects 
with few messages, have an important effect on the 
performance of the simulation.

5. Conclusions and Future Work

We have compared four static load-balancing schemes 
on a theater missile defense simulation, including two 
previously published static load-balancing schemes 
for SPEEDES. We have found that by adding a very 
small amount of domain-specific knowledge, we 
obtain significant performance improvement. The 
new algorithms reduce integrated lag by over 75% 
compared to the SPEEDES default allocation and over 

10% compared to Lballoc2. They also reduce maximum 
lag by 62% compared to the default allocation and 
over 16% compared to Lballoc2. Finally, they reduce 
the total As Fast As Possible simulation time by over 
16% and 1.3% compared to the default allocation 
and Lballoc2, respectively. Furthermore, the optimal 
results for the bin-pack merged scheme occur on fewer 
processors than Lballoc2.
 Since the amount of information that must be provided 
by the domain expert is quite small, these algorithms 
could be readily applied to other simulations having 
multiple object classes. Using this small amount of 
information, these algorithms are able to automatically 
discover related objects of different classes and place 
them together.
 As can be seen in the experimental results, this 
simulation scenario is still far from achieving perfect 
parallelism. Additionally, the real-time lag, while 
significantly improved, is not quite acceptable (ideally 
the maximum real-time lag won’t exceed 10 seconds). 
For these reasons, and because we anticipate increased 
demand for the simulation (larger numbers of objects, 
more fidelity, etc.), we plan to explore other ways of 
improving efficiency, such as reducing the number 
and size of communications between objects. This will 
require analysis of the code for the simulation itself, 

As Fast As Possible Time (seconds)

Algorithm\ #Proc 1 4 8 12 16 20

Default 2836.35 1088.97 755.25 702.35 719.03 808.54

lballoc1 1097.47 800.69 686.30 633.30 745.43

Lballoc2 1109.19 749.94 704.64 711.81 593.53

genetic merged 1014.82 702.37 651.68 633.97 715.53

bin-pack merged 1072.22 726.93 603.67 585.42 594.85

Figure 4. As Fast As Possible simulation time

Figure 5. Graph of AFAP simulation time.
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or the use of a different simulation framework, such as 
one of those proposed by Nutaro [18]. We expect the 
load-balancing schemes to work under any optimistic 
simulation framework, as they balance the load between 

Maximum Real-Time lag (seconds)

Algorithm\ #Proc 8 12 16 20

Default 41.26 29.45 51.92 52.84

Lballoc1 70.51 20.12 18.77 31.87

Lballoc2 44.6 25.76 47.4 13.15

genetic merged 25.07 18.39 13.87 19.17

bin-pack merged 42.76 11.02 12.81 12.67

Real-Time lag (seconds2)

Algorithm\ #Proc 8 12 16 20

Default 7682.18 5604.99 18807.43 12388.49

Lballoc1 13930.04 4130.61 3761.77 5670.99

Lballoc2 7494.57 4227.07 8338.64 1542.73

genetic merged 3823.65 3046.03 2607.07 4297.31

bin-pack merged 9999.13 1381.24 2384.19 2460.89

Figure 6. Maximum real-time lag in seconds

Figure 7. Real time integrated lag data

Figure 8. Integrated lag data

processors, and reduce the number of output events to 
other processors. Additionally, we plan to explore load 
balancing in the context of the larger national missile 
defense scenario [8].
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