

Multi-Agent Cooperation Using the Ant Algorithm with Variable Pheromone Placement
Eric Borzelloi and Laurence D. Merkleii

Abstract
The Ant Algorithm was created by examining real

life ant colonies and developing an algorithm to use
the concept of “stigmergy” to approach multi-agent
problems with distributed control. As agents work
on tasks, more agents attempt difficult tasks. Task
deadlock occurs when agents attempt impossible tasks
indefinitely. Previous research avoids task deadlock
through adaptive attenuation factors. This research
investigates increasing algorithm effectiveness
through variable pheromone placement. Results of
computational experiments are presented
demonstrating the increased effectiveness of the new
algorithm.

Key Words: multi-agent system, cooperation, ant
algorithm, variable pheromone placement

I. INTRODUCTION

There are many applications of multi-agent systems,
such as exploring unknown areas, cleaning a house, and
automated laboratory systems. Though these applications
vary in their specifics, most of them share a key feature –
it would be best if the agents in the system could
collaborate with each other without any outside human
intervention.

A difficulty facing multi-agent system
implementations is avoiding situations in which all tasks
are completed successfully, but the number of agents
working on each task is suboptimal. If too few agents are
working then their effort is wasted until more agents
arrive. If too many agents are working then the effort of
the excess agents is wasted. In either case, the wasted
effort implies wasted time steps.

In 2003, Ding Yingying, He Yan, and Jian Jingping
[5] applied the ant algorithm discussed by Dorigo and
DiCaro [1] to multi-robot system design. The algorithm
assigns more robots to more difficult tasks, and fewer
agents to easier tasks. This allows the number of robots
actually doing useful work to increase, in the sense that
the number of time steps required to complete all of the
possible tasks decreases. Yingying, et al. modify Dorigo
and DiCaro’s algorithm by adding an adaptive
attenuation constant to eliminate task deadlock. They
present results of experiments in which this modification
decreases the time that agents spend going back to
impossible tasks instead of seeking out and performing
tasks they can accomplish.

This research examines a further modification of the
ant algorithm for multi-agent systems that uses a novel
technique of placing pheromone on difficult tasks. This
technique causes agents to place more pheromone on
tasks that are near completion, making the agents more
likely to choose tasks that can be completed soon. It is

demonstrated experimentally that effectiveness is
improved as a result.

The remainder of this paper is organized as follows.
Section II gives an overview of the ant algorithm in
general and a description of the specific version used by
Yingying, et al. Next, Section III describes the version of
the ant algorithm developed in this research. Section IV
describes the software system used as a simulation tool.
Finally, Section V presents the results of computational
experiments evaluating the effectiveness of the proposed
algorithm.

II. BACKGROUND
Systems composed of multiple agents have several

key features that make them desirable for many
applications. First, presence of more than one agent
allows agents to cooperate in order to achieve goals too
difficult for any one agent alone. Furthermore, the
presence of multiple agents allows for relative autonomy
from human intervention, since many such systems can
lose several agents without severe loss of functionality.
In contrast, a system of a single agent is completely
disabled if that agent is lost.

As a result of these features, many real world
problems are approached relatively easily by systems of
collaborating agents. Consequently, multiple agent
systems are a field of significant interest in the area of
artificial intelligence.

Another topic in artificial intelligence is ant
algorithms. An ant algorithm is any algorithm in which
the individual agents use decision making processes that
are in some sense similar to those used by real ants. This
general approach has been applied with some success to
the traveling salesman problem [1], the single machine
job scheduling problem [1], dynamic vehicle routing [2],
image rendering [4], and numerous other domains.

Details of ant algorithms vary, but many share core
tenets. First, agents mark tasks by placing pheromone.
Also, agents are more likely to choose tasks with more
pheromone. Thus, agents attract each other by placing
pheromone. This indirect communication method, called
“stigmergy,” is surprisingly effective.

The basic process of this algorithm is as follows.
When the agents enter a new area, they have no
knowledge of the locations or difficulty of any tasks in
that region, or of the positions of other agents. Each
agent’s motion is determined independently by a random
walk, and the agents do not directly communicate with
one another. When an agent reaches a task, it attempts
that task.

If the agent makes progress on the task, the agent
continues until the task is complete. On the other hand, if
the agent is unable to make progress, it adds pheromone
to the task. The pheromone is added on a “blackboard”
that can be read from and written to by any of the agents.

Proceedings of the 2005 IEEE Congress on Evolutionary Computation.

Agents looking for tasks check to see if any tasks are
indicated by pheromone on the blackboard. If such tasks
exist, the agent will choose one of them rather than
continuing its random search. If there is more than one
task on the blackboard, then the probability that the agent
chooses task i, given there are k tasks total, is

)()(

)()()(

1
tt

tttp
s

k

s
s

select

ii
select

i
i

i

ητµ

ητµ

∑
=

= ,

where)(tiτ is the amount of pheromone on task i at

time t,)1,0(∈µ is the attenuation rate, is the
number of times the particular agent has tried and failed
task i, and

iselect

)(tiη is the heuristic value associated with

task i. For the experiments in Yingying, et al. 1)(=tiη .

III. ANT ALGORITHM MULTI-AGENT
COOPERATION

The goal of this research is to improve the
effectiveness of the ant algorithm for multi-robot systems
proposed by Yingying, et al. The system differs from
theirs in the mechanism by which heuristics are
incorporated into the algorithm. Specifically, in the
system proposed by Yingying, et al., the amount of
pheromone placed by an agent on a task in a time step is
a constant, while in this research it varies heuristically.
Two different pheromone placement functions were
explored. One function, the difficulty-ratio-proportional
function, placed pheromone depending on the difficulty
of the task relative to the total strength of the agents
currently working on the task, and the other, the agent-
count-proportional function, simply placed pheromone
proportional to the number of agents currently working
on the task.

The function which places pheromone proportional to
the ratio of task difficulty to agent strength is:

()nc FF /*)1(ωωτ −+=∆ ,

where]1,0(∈ω , is the amount of total force

needed by the agents to push the ball, and is the
amount of force currently exerted by the agents pushing
on the ball.

nF

cF

The above has the consequence that more pheromone
is placed on balls that already have nearly enough force
exerted on them than is placed on balls that need much
more force. The goal is to have nearly complete tasks
completed sooner so that the agents who are working on
them can instead work on other tasks.

The second function simply placed pheromone

proportional to the number of agents at the ball, so this
function is: ()kn /*)1(ωωτ −+=∆ ,

where]1,0(∈ω , n is the number of agents currently
at the ball, and k is a number that bounds the difficulty of
all the tasks above. This function was introduced to see

if using a constant value for task difficulty, rather than
requiring the agents to know the difficulty of each task,
could still produce greater effectiveness than adding
constant pheromone.

In order to explore these two functions, a specific
problem domain was explored. This domain was as
follows. A number of balls are placed throughout a flat,
featureless plain. The agents’ goal is to return all of these
balls to the same predetermined goal location. In order to
push a ball, the sum of the pushing strengths of the agents
must be greater than or equal to the mass of the ball.
Therefore, pushing a ball is a task, the difficulty of the
task is the weight of the ball, and the sum of the strengths
of the agents currently pushing the ball is how close the
task is to being completed.

Furthermore, for both functions the value of ∆τ is
computed using only local information that is available to
the agent placing the pheromone. Either the weight of
the ball and the total amount of effort being put forth by
the agents currently working on the task in one case, or
the number of agents currently working on a task in the
other. However, the agents that are selecting tasks use
only the pheromone amounts and positions, which is
information stored in the blackboard. This allows the
agents to make informed decisions without needing a
priori knowledge about tasks or locations of the other
agents that they cannot directly sense.

Three details of both of the pheromone placement
functions are noteworthy. First, when ω = 1 this function
corresponds exactly to the function used by Yingying, et
al. Also, the probability of a agent choosing a particular
task is determined by the amount of pheromone placed on
that task relative to the total amount of pheromone
placed, rather than by the absolute amount placed on that
task. Finally,]1,0(∈∆τ , because in the case of the first

function if cn FF ≤ , or if enough agents are working on
a task to complete it in the case of the second function,
then no pheromone will placed (recall that pheromone is
only placed on a task when a agent fails to complete it).

IV. SIMULATION
This section describes a simulation environment used

to evaluate the algorithm discussed above. In this
environment, agents have the characteristics discussed in
Ding, et al. Specifically, they “know” their current
position and the position of the goal, they “sense” agents
and the boundary of the environment within their range
of perception, they detect and push balls, and they place
pheromone on the blackboard. Collisions are not
modeled.

The environment is initialized by placing x agents in
random positions, as well as y balls and one goal in
specified positions. After initialization, the behavior of
agent i is determined by its state, which is either
Wandering, Proceeding, or Working, and whether or not
there is at least one task s for which the following
condition holds.

[]01.0)(),(>≡ ssi s
selectiτµφ

• If agent i is in the Wandering state
and),(siφ becomes true for one or more tasks, then it
chooses one of those tasks as described above and enters
the Proceeding state with the corresponding ball as its
destination. If),(siφ is false for all tasks s, and the
agent discovers a ball b, then it enters the Proceeding
state with ball b as its destination. Otherwise, the agent
takes a step and makes a small random change in
direction. Ignoring tasks for which),(siφ is false
prevents agents from cycling between impossible tasks.
• Agents in the Proceeding state take steps in the
direction of their destinations until either they reach the
destination or the corresponding task is completed. In the
former case, they enter the Working state, while in the
latter case they enter the Wandering state.
• Agents in the Working state attempt to move their
ball towards the goal. If they are not able to do so, they
increment a counter. If the counter reaches a limit (15 in
this case), they add pheromone to their task and enter the
Wandering state. They also enter the Wandering state if
they are able to push their ball to the goal.

V. RESULTS
The scenarios used in these experiments have the

following characteristics. The number of balls initially
added to the environment is a multiple of 20.
Furthermore, ¼ of the balls require one agent to push, ½
require two agents to push, and ¼ are impossible to push
given the number of agents. Each simulation ends when
the tasks consisting of pushing the balls to the goal are all
completed or determined to be impossible.

Results, given in several tables and graphs below,
were averaged over 10,000 simulations per scenario, with
independent starting locations for each simulation.
Below are tables for both of the two pheromone
placement functions discussed above, as well as graphs
comparing the number of time steps needed to complete a
given scenario for a variety of ω values. Each row of a
table corresponds to a different ω value, while each
column is labeled with the number of balls in the
scenario, while every cell contains the average and the
standard deviation of the number of time steps to
complete the scenario with the given ω value. Next, the
graphs were created by ordering the number of time steps
needed to complete the scenario with a specific ω value
from least to greatest. Then, a graph with one line for
each ω value was created. As shown in the tables, the
lower lines were created using the data from the functions
computed with smaller ω values.

Several trends are noticeable in the data. First, the
more tasks in a scenario the more time steps it takes to
resolve them. Next, the functions computed with smaller
ω values take fewer time steps to complete a scenario on
average. Furthermore, the agent-count-proportional
function needs fewer time steps on average to complete a
given scenario than the difficulty-ratio-proportional

function. However, the agent-count-proportional
function also has a higher standard deviation than the
difficulty-ratio-proportional function. Last, the graph
from the scenario with 40 balls shows that when
relatively few tasks are present in a scenario there is quite
a bit of fluctuation in the number of time steps needed.
The data from the 40 ball scenario has a stair-step like
appearance, while the data from the later case appears
more homogeneous.

VI. CONCLUSIONS
When the two new pheromone placement functions

are compared with the version from Yingying et. Al.
there is a large time savings in both cases. Both functions
are consistently more effective than the original function,
and this increased effectiveness is constant as the
problem size increases. Furthermore, the agent-count-
proportional function is found to be more effective than
difficulty-ratio-proportional function. This difference is
present in even very large problem instances.

In fact, agents using the agent-count-proportional
function for ω = .025 completes the scenarios in far fewer
time steps than the agents using the difficulty-ratio-
proportional function on average. For the 260 ball
scenario the agent-count-proportional function completes
the scenario in 75% of the time steps needed by the other
function. More importantly, the agent-count-
proportional function seems to take 25% fewer time steps
for all scenarios with a large number of tasks. This
implies that as the problem instances become larger and
larger the difference in effectiveness, both between the
previous version of the algorithm and the current one,
and between the two functions presented in this paper,
will become more and more noticeable. In fact, it is in
such large cases that the data indicates the agent-count-
proportional function would come into its own. Though
a 25% decrease in time steps needed is noticeable if there
are few tasks, if a case with millions and millions of tasks
were considered then the 25% savings would be a very
large number of time steps.

Though choosing the correct pheromone placement
function can yield significant time savings, the ω of the
function being used also has an effect on completion
time. Essentially, as ω decreases in either of the two new
functions, the effectiveness of the algorithm increases.
Since ω can be understood as how similar to the constant
pheromone placement function the newer function
behaves, small ω being better implies that moving away
from a constant pheromone approach will yield much
more effective algorithms.

VII. FUTURE WORK
Though two different pheromone placement functions

were explored during this research, these functions are
certainly not the only pheromone placement functions
one could consider. The most direct progress that could
be made from this research is to simply consider new
pheromone placement functions, and compare them to the
ones described in this paper.

Furthermore, both the Yingying et.al’s algorithm and
the one outlined in this paper allow for a heuristic
function to be used during the computation of .
The use of heuristics was not explored during this
research. However, creating ways to improve how agents
choose between the tasks will almost certainly be as
productive as improving how the agents place
pheromone.

)(tpi

[2] Darren M. Chitty and Marcel L. Hernandez, “A Hybrid Ant
Colony Optimization Technique for Dynamic Vehicle Routing,”
Proceedings, 2004 Genetic and Evolutionary Computation
Conference, Seattle, WA, June 2004, 48-59.

[3] Marco Dorigo and Gianni DiCaro, “The Ant Colony Optimization
Meta-Heuristic”, New Ideas in Optimization 1999. (New York:
McGraw-Hill)

[4] Yann Semet, Una-May O’Reilly and Fredo Durand, “An
Interactive Artificial Ant Approach to Non-photorealistic
Rendering,” Proceedings, 2004 Genetic and Evolutionary
Computation Conference, Seattle, WA, June 2004, 188-200.

[5] Ding Yingying, He Yan, and Jiang Jingping, “Multi-Robot
Cooperation Method Based on the Ant Algorithm”, Proceedings,
2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, April
24-26, 2003, 14-18.

REFERENCES
[1] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm

Intelligence: From Natural to Artificial Systems. (New York:
Oxford University Press, 1999)

Table 1. Average Time Steps to Complete Simulation with difficulty-ratio-proportional

function
 40 80 120
.025

7722.629 ±
779.13

16231.06 ± 768.54 24706 .00 ± 744.42

.05 7729.829 ±
785.17

16277.88 ± 776.70 24772.16 ± 753.25

.1

7734.17 ± 784.76 16307.35 ± 794.42

24851.67 ± 755.02

.2

7752.618 ±
789.96

16373.12 ± 788.76

24941.65 ± 769.67

.5

7806.883 ±
807.64

16462.51 ± 776.13

25058.52 ± 776.89

ω
 V

al
ue

1.0

7933.934 ±
833.39

16824.07 ± 821.25

25639.84 ± 814.80

Table 1. (Continued)

 200 240 280
.025

41770.6 ± 721.11

50269.61 ± 720.41

58762.66 ± 741.50

.05

41897.55 ± 711.23

50432.18 ± 720.43

58962.77 ± 759.44

.1

42056.29 ± 740.53

50643.61 ± 746.34

59203.74 ± 776.31

.2

42258.19 ± 767.46

50893.1 ± 786.13

59525.77 ± 823.72

.5

42383.3 ± 752.94

51057.38 ± 764.74

59691.52 ± 811.17

ω
 V

al
ue

1.0

43483.11 ± 814.44

52408.92 ±855.86

61297.78 ± 890.73

Table 2. Average Time Steps to Complete Simulation with agent-count-proportional function

 40 80 120
.025

5731.206 ± 582.71

12055.49 ± 584.49

18355.02 ± 572.69

.05

5990.564 ± 598.04

12631.18 ± 605.90

19238.56 ± 615.74

.1

6350.047 ± 648.25

13381.95 ± 655.99

20406.93 ± 650.67

.2

6740.698 ± 684.21

14187.91 ± 674.48

21598.86 ± 679.04

.5

7432.0 ± 756.69

15665.7 ± 772.95

23894.94 ± 779.65

ω
 V

al
ue

1.0

7961.183 ± 816.69

16820.42 ± 825.73

25641.56 ± 826.32

Table 2. (Continued)

 200 240 280
.025

31089.06 ± 698.0443

37404.85 ± 684.2929

43757.13 ± 666.0753

.05

32633.99 ± 698.0784

39287.28 ± 720.0807

45946.62 ± 718.7256

.1

34586.9 ± 699.2618

41675.6 ± 710.5038

48734.81 ± 744.4938

.2

36542.44 ± 681.3128

44004.62 ± 688.7817

51445.34 ± 724.5629

.5

40535.92 ± 781.5535

48859.5 ± 805.2174

57149.89 ± 867.3206

ω
 V

al
ue

1.0

43473.13 ± 825.1548

52392.41 ± 867.5637

61312.37 ± 894.6442

Time Steps Needed to Complete 40 Ball Scenario with difficulty-
ratio-proportional function

3000

4000

5000

6000

7000

8000

9000

10000

Ti
m

e
S

te
ps

Time Steps Needed to Complete 260 Ball Scenario with
difficulty-ratio-proportional function

50000

51000

52000

53000

54000

55000

56000

57000

58000

59000

60000

Ti
m

e
S

te
ps

Time Steps Needed to Complete 260 Ball Scenario with agent-
count-proportional function

60000

35000

40000

45000

50000

55000

Ti
m

e
S

te
ps

i Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, Eric.Borzello@Rose-Hulman.edu.
ii Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, Laurence.D.Merkle@Rose-Hulman.edu.

mailto:Eric.Borzello@Rose-Hulman.edu
mailto:Laurence.D.Merkle@Rose-Hulman.edu

	INTRODUCTION

