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Abstract 
The Ant Algorithm was created by examining real 

life ant colonies and developing an algorithm to use 
the concept of “stigmergy” to approach multi-agent 
problems with distributed control.   As agents work 
on tasks, more agents attempt difficult tasks.  Task 
deadlock occurs when agents attempt impossible tasks 
indefinitely.  Previous research avoids task deadlock 
through adaptive attenuation factors.  This research 
investigates increasing algorithm effectiveness 
through variable pheromone placement.  Results of 
computational experiments are presented 
demonstrating the increased effectiveness of the new 
algorithm. 
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I. INTRODUCTION 

There are many applications of multi-agent systems, 
such as exploring unknown areas, cleaning a house, and 
automated laboratory systems.  Though these applications 
vary in their specifics, most of them share a key feature – 
it would be best if the agents in the system could 
collaborate with each other without any outside human 
intervention.   

A difficulty facing multi-agent system 
implementations is avoiding situations in which all tasks 
are completed successfully, but the number of agents 
working on each task is suboptimal.  If too few agents are 
working then their effort is wasted until more agents 
arrive.  If too many agents are working then the effort of 
the excess agents is wasted.  In either case, the wasted 
effort implies wasted time steps. 

In 2003, Ding Yingying, He Yan, and Jian Jingping 
[5] applied the ant algorithm discussed by Dorigo and 
DiCaro [1] to multi-robot system design.  The algorithm 
assigns more robots to more difficult tasks, and fewer 
agents to easier tasks.  This allows the number of robots 
actually doing useful work to increase, in the sense that 
the number of time steps required to complete all of the 
possible tasks decreases.  Yingying, et al. modify Dorigo 
and DiCaro’s algorithm by adding an adaptive 
attenuation constant to eliminate task deadlock.  They 
present results of experiments in which this modification 
decreases the time that agents spend going back to 
impossible tasks instead of seeking out and performing 
tasks they can accomplish. 

This research examines a further modification of the 
ant algorithm for multi-agent systems that uses a novel 
technique of placing pheromone on difficult tasks.  This 
technique causes agents to place more pheromone on 
tasks that are near completion, making the agents more 
likely to choose tasks that can be completed soon.  It is 

demonstrated experimentally that effectiveness is 
improved as a result. 

The remainder of this paper is organized as follows.  
Section II gives an overview of the ant algorithm in 
general and a description of the specific version used by 
Yingying, et al.  Next, Section III describes the version of 
the ant algorithm developed in this research.  Section IV 
describes the software system used as a simulation tool.  
Finally, Section V presents the results of computational 
experiments evaluating the effectiveness of the proposed 
algorithm. 

II. BACKGROUND 
Systems composed of multiple agents have several 

key features that make them desirable for many 
applications.  First, presence of more than one agent 
allows agents to cooperate in order to achieve goals too 
difficult for any one agent alone.  Furthermore, the 
presence of multiple agents allows for relative autonomy 
from human intervention, since many such systems can 
lose several agents without severe loss of functionality.  
In contrast, a system of a single agent is completely 
disabled if that agent is lost. 

As a result of these features, many real world 
problems are approached relatively easily by systems of 
collaborating agents.  Consequently, multiple agent 
systems are a field of significant interest in the area of 
artificial intelligence. 

Another topic in artificial intelligence is ant 
algorithms.  An ant algorithm is any algorithm in which 
the individual agents use decision making processes that 
are in some sense similar to those used by real ants.  This 
general approach has been applied with some success to 
the traveling salesman problem [1], the single machine 
job scheduling problem [1], dynamic vehicle routing [2], 
image rendering [4], and numerous other domains. 

Details of ant algorithms vary, but many share core 
tenets.  First, agents mark tasks by placing pheromone.  
Also, agents are more likely to choose tasks with more 
pheromone.  Thus, agents attract each other by placing 
pheromone.  This indirect communication method, called 
“stigmergy,” is surprisingly effective. 

The basic process of this algorithm is as follows.  
When the agents enter a new area, they have no 
knowledge of the locations or difficulty of any tasks in 
that region, or of the positions of other agents.  Each 
agent’s motion is determined independently by a random 
walk, and the agents do not directly communicate with 
one another.  When an agent reaches a task, it attempts 
that task. 

If the agent makes progress on the task, the agent 
continues until the task is complete.  On the other hand, if 
the agent is unable to make progress, it adds pheromone 
to the task.  The pheromone is added on a “blackboard” 
that can be read from and written to by any of the agents. 
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Agents looking for tasks check to see if any tasks are 
indicated by pheromone on the blackboard.  If such tasks 
exist, the agent will choose one of them rather than 
continuing its random search.  If there is more than one 
task on the blackboard, then the probability that the agent 
chooses task i, given there are k tasks total, is 
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where )(tiτ  is the amount of pheromone on task i at 

time t, )1,0(∈µ  is the attenuation rate,  is the 
number of times the particular agent has tried and failed 
task i, and 

iselect

)(tiη  is the heuristic value associated with 

task i. For the experiments in Yingying, et al. 1)( =tiη . 

III. ANT ALGORITHM MULTI-AGENT 
COOPERATION  

The goal of this research is to improve the 
effectiveness of the ant algorithm for multi-robot systems 
proposed by Yingying, et al.  The system differs from 
theirs in the mechanism by which heuristics are 
incorporated into the algorithm.  Specifically, in the 
system proposed by Yingying, et al., the amount of 
pheromone placed by an agent on a task in a time step is 
a constant, while in this research it varies heuristically.  
Two different pheromone placement functions were 
explored.  One function, the difficulty-ratio-proportional 
function, placed pheromone depending on the difficulty 
of the task relative to the total strength of the agents 
currently working on the task, and the other, the agent-
count-proportional function, simply placed pheromone 
proportional to the number of agents currently working 
on the task. 

The function which places pheromone proportional to 
the ratio of task difficulty to agent strength is: 

( )nc FF /*)1( ωωτ −+=∆ ,  

where ]1,0(∈ω , is the amount of total force 

needed by the agents to push the ball, and is the 
amount of force currently exerted by the agents pushing 
on the ball. 
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The above has the consequence that more pheromone 
is placed on balls that already have nearly enough force 
exerted on them than is placed on balls that need much 
more force.  The goal is to have nearly complete tasks 
completed sooner so that the agents who are working on 
them can instead work on other tasks. 

  
The second function simply placed pheromone 

proportional to the number of agents at the ball, so this 
function is: ( )kn /*)1( ωωτ −+=∆ ,  

where ]1,0(∈ω , n is the number of agents currently 
at the ball, and k is a number that bounds the difficulty of 
all the tasks above.  This function was introduced to see 

if using a constant value for task difficulty, rather than 
requiring the agents to know the difficulty of each task, 
could still produce greater effectiveness than adding 
constant pheromone. 

In order to explore these two functions, a specific 
problem domain was explored.  This domain was as 
follows.  A number of balls are placed throughout a flat, 
featureless plain.  The agents’ goal is to return all of these 
balls to the same predetermined goal location.  In order to 
push a ball, the sum of the pushing strengths of the agents 
must be greater than or equal to the mass of the ball.  
Therefore, pushing a ball is a task, the difficulty of the 
task is the weight of the ball, and the sum of the strengths 
of the agents currently pushing the ball is how close the 
task is to being completed. 

Furthermore, for both functions the value of ∆τ is 
computed using only local information that is available to 
the agent placing the pheromone.  Either the weight of 
the ball and the total amount of effort being put forth by 
the agents currently working on the task in one case, or 
the number of agents currently working on a task in the 
other.  However, the agents that are selecting tasks use 
only the pheromone amounts and positions, which is 
information stored in the blackboard.  This allows the 
agents to make informed decisions without needing a 
priori knowledge about tasks or locations of the other 
agents that they cannot directly sense. 

Three details of both of the pheromone placement 
functions are noteworthy.  First, when ω = 1 this function 
corresponds exactly to the function used by Yingying, et 
al.  Also, the probability of a agent choosing a particular 
task is determined by the amount of pheromone placed on 
that task relative to the total amount of pheromone 
placed, rather than by the absolute amount placed on that 
task.  Finally, ]1,0(∈∆τ , because in the case of the first 

function if  cn FF ≤ , or if enough agents are working on 
a task to complete it in the case of the second function, 
then no pheromone will placed (recall that pheromone is 
only placed on a task when a agent fails to complete it). 

IV. SIMULATION 
This section describes a simulation environment used 

to evaluate the algorithm discussed above.  In this 
environment, agents have the characteristics discussed in 
Ding, et al.  Specifically, they “know” their current 
position and the position of the goal, they “sense” agents 
and the boundary of the environment within their range 
of perception, they detect and push balls, and they place 
pheromone on the blackboard.  Collisions are not 
modeled.   

The environment is initialized by placing x agents in 
random positions, as well as y balls and one goal in 
specified positions. After initialization, the behavior of 
agent i is determined by its state, which is either 
Wandering, Proceeding, or Working, and whether or not 
there is at least one task s for which the following 
condition holds.  
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• If agent i is in the Wandering state 
and ),( siφ becomes true for one or more tasks, then it 
chooses one of those tasks as described above and enters 
the Proceeding state with the corresponding ball as its 
destination. If ),( siφ  is false for all tasks s, and the 
agent discovers a ball b, then it enters the Proceeding 
state with ball b as its destination.  Otherwise, the agent 
takes a step and makes a small random change in 
direction. Ignoring tasks for which ),( siφ  is false 
prevents agents from cycling between impossible tasks. 
• Agents in the Proceeding state take steps in the 
direction of their destinations until either they reach the 
destination or the corresponding task is completed.  In the 
former case, they enter the Working state, while in the 
latter case they enter the Wandering state. 
• Agents in the Working state attempt to move their 
ball towards the goal.  If they are not able to do so, they 
increment a counter.  If the counter reaches a limit (15 in 
this case), they add pheromone to their task and enter the 
Wandering state.  They also enter the Wandering state if 
they are able to push their ball to the goal. 

V. RESULTS 
The scenarios used in these experiments have the 

following characteristics.  The number of balls initially 
added to the environment is a multiple of 20.  
Furthermore, ¼ of the balls require one agent to push, ½ 
require two agents to push, and ¼ are impossible to push 
given the number of agents.  Each simulation ends when 
the tasks consisting of pushing the balls to the goal are all 
completed or determined to be impossible.   

Results, given in several tables and graphs below, 
were averaged over 10,000 simulations per scenario, with 
independent starting locations for each simulation.  
Below are tables for both of the two pheromone 
placement functions discussed above, as well as graphs 
comparing the number of time steps needed to complete a 
given scenario for a variety of ω values.  Each row of a 
table corresponds to a different ω value, while each 
column is labeled with the number of balls in the 
scenario, while every cell contains the average and the 
standard deviation of the number of time steps to 
complete the scenario with the given ω value.  Next, the 
graphs were created by ordering the number of time steps 
needed to complete the scenario with a specific ω value 
from least to greatest.  Then, a graph with one line for 
each ω value was created.  As shown in the tables, the 
lower lines were created using the data from the functions 
computed with smaller ω values.   

Several trends are noticeable in the data.  First, the 
more tasks in a scenario the more time steps it takes to 
resolve them.  Next, the functions computed with smaller 
ω values take fewer time steps to complete a scenario on 
average.  Furthermore, the agent-count-proportional 
function needs fewer time steps on average to complete a 
given scenario than the difficulty-ratio-proportional 

function.  However, the agent-count-proportional 
function also has a higher standard deviation than the 
difficulty-ratio-proportional function.  Last, the graph 
from the scenario with 40 balls shows that when 
relatively few tasks are present in a scenario there is quite 
a bit of fluctuation in the number of time steps needed.  
The data from the 40 ball scenario has a stair-step like 
appearance, while the data from the later case appears 
more homogeneous. 

VI. CONCLUSIONS 
When the two new pheromone placement functions 

are compared with the version from Yingying et. Al. 
there is a large time savings in both cases.  Both functions 
are consistently more effective than the original function, 
and this increased effectiveness is constant as the 
problem size increases.  Furthermore, the agent-count-
proportional function is found to be more effective than 
difficulty-ratio-proportional function.  This difference is 
present in even very large problem instances. 

In fact, agents using the agent-count-proportional 
function for ω = .025 completes the scenarios in far fewer 
time steps than the agents using the difficulty-ratio-
proportional function on average.  For the 260 ball 
scenario the agent-count-proportional function completes 
the scenario in 75% of the time steps needed by the other 
function.  More importantly, the agent-count-
proportional function seems to take 25% fewer time steps 
for all scenarios with a large number of tasks.  This 
implies that as the problem instances become larger and 
larger the difference in effectiveness, both between the 
previous version of the algorithm and the current one, 
and between the two functions presented in this paper, 
will become more and more noticeable.  In fact, it is in 
such large cases that the data indicates the agent-count-
proportional function would come into its own.  Though 
a 25% decrease in time steps needed is noticeable if there 
are few tasks, if a case with millions and millions of tasks 
were considered then the 25% savings would be a very 
large number of time steps. 

Though choosing the correct pheromone placement 
function can yield significant time savings, the ω of the 
function being used also has an effect on completion 
time.  Essentially, as ω decreases in either of the two new 
functions, the effectiveness of the algorithm increases.  
Since ω can be understood as how similar to the constant 
pheromone placement function the newer function 
behaves, small ω being better implies that moving away 
from a constant pheromone approach will yield much 
more effective algorithms. 

VII. FUTURE WORK 
Though two different pheromone placement functions 

were explored during this research, these functions are 
certainly not the only pheromone placement functions 
one could consider.  The most direct progress that could 
be made from this research is to simply consider new 
pheromone placement functions, and compare them to the 
ones described in this paper. 



 

Furthermore, both the Yingying et.al’s algorithm and 
the one outlined in this paper allow for a heuristic 
function to be used during the computation of .  
The use of heuristics was not explored during this 
research.  However, creating ways to improve how agents 
choose between the tasks will almost certainly be as 
productive as improving how the agents place 
pheromone. 
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Table 1.  Average Time Steps to Complete Simulation with difficulty-ratio-proportional 

function 
 40 80   120 
.025 
 

7722.629 ± 
779.13 

16231.06 ± 768.54 24706 .00 ± 744.42 
 

.05 7729.829 ± 
785.17 

16277.88 ± 776.70 24772.16 ± 753.25 
 

.1 
 

7734.17  ± 784.76 16307.35 ± 794.42 
 

24851.67 ± 755.02 
 

.2 
 

7752.618 ± 
789.96 

16373.12 ± 788.76 
 

24941.65 ± 769.67 
 

.5 
 

7806.883 ± 
807.64 

16462.51  ± 776.13 
 

25058.52 ± 776.89 
 

ω
 V

al
ue

 

1.0 
 

7933.934 ± 
833.39 

16824.07 ± 821.25 
 

25639.84 ± 814.80 
 

 
Table 1.  (Continued) 

 200 240 280 
.025 
 

41770.6 ± 721.11 
 

50269.61 ± 720.41 
 

58762.66 ± 741.50 
 

.05 
 

41897.55 ± 711.23 
 

50432.18 ± 720.43 
 

58962.77 ± 759.44 
 

.1 
 

42056.29 ± 740.53 
 

50643.61 ± 746.34 
 

59203.74 ± 776.31 
 

.2 
 

42258.19 ± 767.46 
 

50893.1 ± 786.13 
 

59525.77 ± 823.72 
 

.5 
 

42383.3 ± 752.94 
 

51057.38  ± 764.74 
 

59691.52 ± 811.17 
 

ω
 V

al
ue

 

1.0 
 

43483.11 ± 814.44 
 

52408.92 ±855.86 
 

61297.78 ± 890.73 
 

 



 

Table 2.  Average Time Steps to Complete Simulation with agent-count-proportional function 
 

 40 80 120 
.025 
 

5731.206 ± 582.71 
 

12055.49 ± 584.49 
 

18355.02 ± 572.69 
 

.05 
 

5990.564 ± 598.04 
 

12631.18 ± 605.90 
 

19238.56 ± 615.74 
 

.1 
 

6350.047 ± 648.25 
 

13381.95 ± 655.99 
 

20406.93 ± 650.67 
 

.2 
 

6740.698 ± 684.21 
 

14187.91 ± 674.48 
 

21598.86 ± 679.04 
 

.5 
 

7432.0 ± 756.69 
 

15665.7 ± 772.95 
 

23894.94 ± 779.65 
 

ω
 V

al
ue

 

1.0 
 

7961.183 ± 816.69 
 

16820.42 ± 825.73 
 

25641.56 ± 826.32 
 

 
Table 2.  (Continued) 

 200 240 280 
.025 
 

31089.06  ± 698.0443 
 

37404.85 ± 684.2929 
 

43757.13 ± 666.0753 
 

.05 
 

32633.99 ± 698.0784 
 

39287.28  ± 720.0807 
 

45946.62 ± 718.7256 
 

.1 
 

34586.9 ± 699.2618 
 

41675.6 ± 710.5038 
 

48734.81  ± 744.4938 
 

.2 
 

36542.44 ± 681.3128 
 

44004.62 ± 688.7817 
 

51445.34 ± 724.5629 
 

.5 
 

40535.92  ± 781.5535 
 

48859.5 ± 805.2174 
 

57149.89  ± 867.3206 
 

ω
 V

al
ue

 

1.0 
 

43473.13  ± 825.1548 
 

52392.41 ± 867.5637 
 

61312.37 ± 894.6442 
 

 
 

Time Steps Needed to Complete 40 Ball Scenario with  difficulty-
ratio-proportional function
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Time Steps Needed to Complete 260 Ball Scenario with 
difficulty-ratio-proportional function
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Time Steps Needed to Complete 260 Ball Scenario with agent-
count-proportional function
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